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Report Summary

Introduction:

Summary of Problem:

In this research, a multimodal transportation model was developed attending the needs of emergency situ-

ations, and the solutions provided by the model could be used to moderate congestion during such events.

The model incorporated features such as lane reversals as they have a significant impact on the evacuation

efficiency. We proposed analytical techniques to solve the model. In this project, we developed a multimodal

evacuation model and we hope to apply the model for an event management at the football stadium at

University of Florida. The model is used to establish optimal evacuation routes to the bimodal evacuation

problem and obtain efficient loading schemes for the staged evacuation. As a future extension, we are working

on acceleration of the convergence of the algorithm.

Research Objectives and Scope:

In this research, we intend to establish optimal evacuation routes using multimodal transportation. The

proposed solution procedure will also provide a loading scheme for the evacuation. The evacuation time

obtained from the proposed techniques will be shorter than the contemporary evacuation techniques. We

design analytical techniques to develop a staged evacuation procedure. Staged evacuation has empirically

shown to handle congestion efficiently. Also, their impact is better realized under an emergency situation.

Lane reversals will be implemented as a preprocessing step to further improve the efficiency. An integer

program has been formulated to solve the lane reversal problem and it will be used to identify the lanes. We

will also provide proof for polynomial time solvability of the lane reversal in maximum dynamic-flow and

quickest flow problems. Multimodal flow problems are known to be NP-hard, a class of problems with no

known polynomial time algorithm to solve them, making the problem under consideration quite significant.

The optimization techniques currently employed could be formulated as a network flow problem, wherein

the nodes of the network are the places, which could be a city or a house or a building room that are

linked by the arcs, which includes roads, corridors or streets. Static demands and travel times will be

considered as a simplistic assumption to make the model computationally efficient. The model developed

will be implemented to manage an event in the football stadium of University of Florida at Gainesville. We

have procured the necessary data and it requires some processing to fit the requirement of inputs of the

model.
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Progress Schedule

Table 1: Progress Schedule
Month Planned gross Actual Gross Planned Progress (%) Estimated Actual

Expenditure Expenditure Progress(%)
1 10 10 7 7
2 14 14 18 18
3 24 24 26 26
4 31 31 45 45
5 40 40 58 58
6 47 47 70 60
7 61 61 75 62
8 70 65 83 65
9 80 70 88 70
10 85 75 94 75
11 95 80 97 77
12 100 85 100 80
13 100 85 100 85
14 100 90 100 85
15 100 100 100 100

Project Deliverable

Table 2: Project Deliverable
Task Description OriginalDueDate DateDelivered
1 A comprehensive review of evacuation problem First quarter First quarter
2 Lane reversal Strategies and complexity Last quarter First quarter

of contraflow problems
3 Complete model and implementation Second quarter Second Quarter
4 Testing on computer generated instances Third quarter Third quarter
5 Theory for stabilization and acceleration Fourth quarter Fourth quarter

of convergence of algorithms
6 Testing of benchmark instances of planar and grid graphs Fourth quarter Fifth quarter
7 Implementation of Stabilization of techniques proposed Fourth quarter Fifth quarter
8 Real time instance test preparation & preprocessing Fourth quarter Fifth quarter
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Overall Accomplishments of the Project

1. We carried out a comprehensive survey on evacuation models available in the literature.

2. We conducted a complexity studies and developed algorithms for various lane reversal strategies for

network flow problem.

3. We developed a branch-and-price model for the bimodal evacuation problem.

4. We implemented the branch-and-price model in parallel computer and tested it successfully for some

benchmark instances comprising of planar and grid graphs.

5. We developed the mathematical theory that involves numerical speed-up of the branch and price

procedure. Some of these of have been implemented and some of them are currently being implemented

or developed.

6. We tested some additional benchmark instances for planar graphs for multicommodity flow problems

7. The implementation of box stabilization technique has been carried out

We now provide the research findings in the following sections. In section 5, we provide a thorough survey

on evacuation models that are available in the literature. In section 6, we formally state the contraflow

problem, study the complexity of the problem and provide algorithms for simple cases. In section 7, we

develop and test a bimodal evacuation model with buses and cars as modes of transportation. Finally,

we summarize and conclude with a note on future work with possible extensions, validation and real-life

applicability.
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Review of Evacuation Problems

Hurricanes, earthquakes, industrial accidents, nuclear accidents, terrorist attacks and other such emergency

situations pose a great danger to the lives of the populace. Evacuation during these situations is one way to

increase safety and avoid escalation of damages. Evacuation problems are being given increased attention

over the last five years. The techniques that are currently employed could be broadly categorized into

optimization or simulation methods. In either case, the evacuation problem is dealt over a network where

arcs or edges are the roads linking two places or the nodes of the network. The typical factors usually

taken into consideration by these models are origin-destination assignment, response time of the evacuees,

modes of transportation, contra flows etc. Factors such as origin-destination assignment and arc capacities

could be set as static or dynamic, and these decisions heavily influence the evacuation efficiency. Most of

the recent surveys and reviews in the field of evacuation were made for specific instances Gwynne et al.

(1999); Santos and Aguirre (2004). The surveys cater to a specific technique and discuss in detail on their

impact on emergency evacuation. This chapter is more across the board. The objective is to present

a comprehensive report on the techniques that are available in the literature and broadly classify them.

An initial classification was made depending on the approaches used in the evacuation models, namely

optimization-based or simulation-based approaches. Furthermore, a subclassification was made based on

some vital features considered by the model. These are features that are expected to have a significant

impact on evacuation efficiency. The solution methodologies, for every model under these classifications, were

discussed in detail and were also assessed based on their computational performance, scalability, extensibility,

realizability and the major components considered. Computational efficiency of the model is important in

case of unforeseen events. The models needs to be executed quickly to generate alternative plans and prepare

for the dynamic scenarios. The complexity of the evacuation problems makes the researchers resort to for

heuristic procedures and simulation-based approaches. Thus the solutions tested and provided needs to be

scalable, or in other words, realizable on larger instances. Most of the models are customized to specific

situations but when needed to accommodate additional features and handle more parameters they need to

be extensible. The realizability of the model is achieved when they are tested on real time networks and

most of the theoretical guarantees are accomplished. The chapter finally concludes with few words on the

shortcomings of the available models that may require attention and lays down vital features that a new

designer has to seek in a model.

Optimization Techniques

A large number of optimization models, sometimes referred to as analytical models in the literature, have

been developed for evacuation studies.While some of these models are discrete, the rest are extensions from

these base models. However, these models are essentially a simple network flow problem trying obtain a

minimum cost flow from source to destination. A detailed discussion of the flow problems is carried out in

the following section.

Maximum Dynamic Flow

An elementary evacuation flow problems could be formulated as a linear integer program using a variant of

the maximum dynamic flow problem Ford and Fulkerson (1962, 1958). The maximum dynamic flow problem

is to determine the maximum amount flow from origin to destination within a specific time T. Ford and

Fulkerson formulated this problem on a time-expanded static network, where each node and edge is replaced

by T copies corresponding to each time instance Ford and Fulkerson (1962). Given a digraph G(V,E) and

time interval T, let c(u, v) and t(u, v) be the capacity and traversal time of arc (uv) ∈ E. Let x(u, v, τ)

be the amount of flow leaving node u along arc (u, v) at time τ . Let the origin node be s and destination
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node be t. Assuming holding over of flow over any node is allowed, we have the following integer linear

programming problem that solves the maximum dynamic flow problem:

Maximize
T∑

τ=0

∑

(su)∈E

x(s, u, τ) −
T∑

τ=0

∑

(us)∈E

x(u, s, τ − t(u, s)) (1)

s.t. ∑

(uv)∈E

x(u, v, τ) −
∑

(vu)∈E

x(v, u, τ − t(v, u)) = 0

, ∀ u 6= s, t, u ∈ V, τ = 0, 1, . . . , T (2)

[

T∑

τ=0

∑

(su)∈E

x(s, u, τ) −
T∑

τ=0

∑

(us)∈E

x(u, s, τ − t(u, s))]

+[

T∑

τ=0

∑

(tu)∈E

x(t, u, τ) −
T∑

τ=0

∑

(ut)∈E

x(u, t, τ − t(u, t))] = 0 (3)

0 ≤ x(u, v, τ) ≤ c(u, v), ∀(uv) ∈ E, τ = 1 . . . T (4)

The objective function that has to be maximized gives the net amount of flow leaving the origin node s

by time period T. The constraint set (2) ensures conservation of flow at every node, where the amount

of flow that enters a node is exactly equal to the amount of flow that leaves the node at any time period.

The constraint set (3) ensures that at the end of T time periods the amount of flow that leaves the origin

s is equal to the amount of flow that enters the destination t. The above formulation solves a maximum

flow problem over a time expanded graph. The problem becomes extremely difficult to solve for larger

graphs with a bigger time frame. However, in Ford and Fulkerson (1962), the authors suggested a strictly

polynomial algorithm for the maximum dynamic flow. They solved the minimum cost flow problem on the

original graph, without time expansion, and decomposed the flow into a set of paths. Then they obtained

the maximum dynamic flow by temporally repeating the flow along the paths.

Most of the evacuation problems are ramifications of the maximum dynamic flow problem. The quickest

flow problem, sometimes referred to as evacuation problem, is to determine the minimum time required to

send a given amount of flow from the origin to the destination. This problem is a simple variation of the

maximum dynamic flow problem and could be solved through a binary search. In Burkard et al. (1993a),

the authors proved this reduction from the maximum dynamic flow problem to the quickest flow problem

and provided a strongly polynomial time algorithm through a parametric search on the quickest time by

repeatedly solving the maximum dynamic flow problem. Many other work have been done in this line

generalizing this concept. In Fleischer and Skutella (2002), a work on multicommodity shipment of flows

was provided. A multicommodity flow problem on a static graph without a time bound is: Given a graph

with a arc travel time and capacity on each arc and a set of commodities K = 1, . . . , k with each commodity

having specific origin si and destination ti, it is required to send a specific amount of flow from si to ti of

the corresponding commodity in the minimum amount of time. The problem is formulated in the following
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manner.

Minimize
k∑

i=1

∑

(uv)∈E

c(u, v, i)x(u, v, i) (5)

s.t. ∑

(uv)∈E

x(u, v, i) −
∑

(vw)∈E

x(v, w, i) = 0, ∀v ∈ V, i = 1, . . . , k (6)

∑

(uti)∈E

x(u, ti, i) −
∑

(tiv)∈E

x(ti, v, i) ≥ di, ∀i = 1, . . . , k (7)

0 ≤ x(u, v, i)∀uv ∈ E, i = 1, . . . , k (8)
k∑

i=1

x(u, v, i),≤ c(u, v)∀(uv) ∈ E, i = 1, . . . , k (9)

x(u, v, i) is the amount of flow on arc (uv) of commodity i and c(u, v, i) is the cost of unit flow on arc (uv) of

commodity i. The constraint set (6) implies the flow conservation at a node for a particular commodity and

the constraint set (7) ensures that the sinks node ti receives di amount of flow. Finally, (8) and (9) restraints

the flow capacity on each arc. The above is a multicommodity flow problem for a static graph. In order to

solve the quickest multicommodity problem, we have to extend the formulation to a time-expanded graph

similar to the previous problem formulation. However, this results in numerous constraints and variables

if the time horizon, T, considered in large. Each node and arc of the graph is replaced by T copies, each

corresponding to the specific time instant. The multicommodity flow problem is known to be NP-hard even

for a static graph Gary and Johnson (1979). To overcome the time expansion difficulty a scaling algorithm

could be employed, where in each node and arc is replaced by T/δ copies instead T, thus reducing the

problem size considerably and striking a balance between the precision of the result and the running time of

the algorithm Fleischer and Skutella (2002). In Hoppe and Tardos (1995), the authors provided solutions for

three variations of maximum dynamic flow problem. They provided a polynomial time approximation for the

earliest arrival flow problem, which was studied by Wilkinson (1971) and Minieka (1973). The earliest arrival

flow problem requires the flow to be maximized at each time step of the given horizon, unlike the maximum

dynamic flow problem. The proposed algorithm is based on successive shortest path algorithm, where the

flow is augmented along the shortest path, quickest path in our case, and the chain decomposition is given

by augmentations performed in a sequence of static graphs. However, successive shortest path is a pseudo-

polynomial algorithm. This difficulty is usually handled by scaling. Unlike traditional scaling, the proposed

algorithm performs an upward capacity scaling. A dynamic flow quickest path with a small capacity could be

repeated temporally to obtain a maximum flow. We refer to Hoppe and Tardos (1995) for a detailed account

of the algorithm and proof of approximation. The second problem studied was lexicographic maximum

dynamic flow. Given a set of sources and their priority of evacuation the lexicographic maximum dynamic

flow maximizes the flows leaving the sources in the specified order. Finally, they studied the quickest flow

problem with fixed number of sources and destinations with equal priorities having specific supply demands.

In Klinz and Woeginger (2004), the authors pointed out that the problem of determining quickest flow from

any subset of nodes to any other subset of nodes is equivalent to a single source shortest path problem.

Thus, for a fixed number of sources and destinations, this problem is polynomially solvable, if we consider

all possible subsets of the sources and destinations. In the same fashion, for a fixed number of source and

destination, the lexicographic maximum dynamic flow could be solved for all possible ordering of the sources

to solve the above problem. A detailed and more efficient algorithm was given in Hoppe and Tardos (1994)

for this quickest transshipment problem with more than one origin and destination. These models based

on maximum dynamic flow problem have their practical limitations, as they are oblivious to factors such as
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congestion control, dynamic origin and destination demand and multimodal transportation, which are quite

conceivable in a real-time situation. The flow problems are rather simplified versions of real time model.

The models are computationally efficient with polynomial time solutions for exact or approximate solutions.

The problems thus could help in providing quick solutions to large problem sizes under a simplified setting.

The realizability of the model is limited but their computational efficiency could be taken advantage of in

preprocessing stages of analytical techniques and heuristic developments.

Dynamic Traffic Assignment

In Merchant and Nemhauser (1978), the dynamic traffic assignment (DTA) problem was introduced and

formulated as a non-linear program with a non-convex mathematical program. The problem is to find an

assignment of flows on the links optimally. Like before, let us assume the planning horizon to be T. And

G(V,E) be the digraph under consideration. Let x(u, v, τ) be the amount of flow on arc (u, v) at time τ .

Let F (u, τ) be the external input in node u at time τ and huv,τ (x(u, v, τ)) be the cost function. Also, let

guv(x(u, v, τ)) be the exit function denoting the amount of flow that exits from arc u,v during period τ .

Finally, d(u, v, τ) be the amount of flow entering arc (uv) at node u. The DTA problem is formulated as

follows:

Minimize

T∑

τ=0

∑

(uv)∈E

huv,τ (x(u, v, τ)) (10)

s.t.

x(u, v, τ + 1) − x(u, v, τ) + guv(x(u, v, τ))

−d(u, v, τ) = 0, ∀(uv) ∈ E, τ = 1, 2, . . . , T (11)∑

∀uv∈E

d(u, v, τ) − F (u, τ)

−
∑

∀pu∈E

gpu(x(p, u, τ)) = 0, ∀u ∈ V \t, τ = 1, 2, . . . , T (12)

0 ≤ x(u, v, τ), ∀(uv) ∈ E, τ = 0 . . . T (13)

0 ≤ d(u, v, τ)∀(uv) ∈ E, τ = 0 . . . T (14)

This work by Merchant and Nemhauser was the opening to dynamic traffic assignment. They formu-

lated discrete piecewise linearized version of the traffic assignment problem. The problem assumes that

the demands are available and it has a single destination. In most of the emergency situations these as-

sumptions are not preserved. For instance, of a multicommodity flow where it is required to maintain the

origin-destination pair, a single-destination model may not be suitable. Also, dynamic demand in place

of a static demand estimate is more efficient and more precise in a real-time situation. In Carey (1986a),

the model was validated by proving that the constraints satisfy linear independence constraint qualification

as the exit function is continuously differentiable. In Ho (1980), the authors linearized the exit and cost

function and obtained the global optimum for the nonlinear, non-convex optimization problem by solving a

series of T+1 optimization problems. A link flow non-linear mixed integer programming formulation and a

convergent dynamic algorithm to solve the dynamic user equilibrium problem was provided in Carey (1986b).

It explicitly seeks equilibrium in terms of path travel times unlike Merchant and Nemhauser’s model. The

model depends on static use equilibrium functions with additional constraints to ensure temporally contin-

uous flow. The technique itself is not pertinent to evacuation studies, and hence we refer to the work in

Peeta and Ziliaskopoulos (2001) who made a detailed study on dynamic traffic assignment in their survey.
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We are more interested in its applicability in emergency situations; however, the little background provided

is required.

The cell-based dynamic traffic assignment that segmented the highway links into equal sized cells, such

that each cell could be traversed in an unit time was provided in Daganzo (1994). Each cell has a specific

capacity and the congestion is explicitly handled by restraining the amount of flow from one cell to another.

In Ziliaskopoulos (2000), Daganzo’s formulation was relaxed by holding of flow at nodes in the flow con-

servation equations. In Chiu et al. (2007), the authors implemented a dynamic traffic modeling technique

based on the cell transmission model Daganzo (1994) for an optimal no-notice mass evacuation. They also

proposed a network transformation to a single destination network and then a cell network, for the above

implementation. Their objective in no-notice evacuation also includes identification of destinations. The

modeling is done through a graph transformation. The model employs aggregation of zones and hence could

be scaled appropriately to handle large graphs. The model assumes prior knowledge of originating demands

and zonal information, which in most cases are available. Also, the optimization formulation was provided

for a cell-based transmission for a time expanded graph. The model optimization model as such might be

time consuming while applied over real time graphs. The authors pointed out that without user-equilibrium

constraints the model may not be of practical interest. The model might be useful during no-notice mass

evacuation, assuming that there is an efficient technique to solve it, but the assumptions make it rigid to

extend it to other emergency situations. Another work employing cell-transmission model is in Liu et al.

(2006a). They discuss the staged evacuation procedure, where in a zonal classification of the nodes is done

based on the severity of impacts they suffer and starting time for each evacuation zone is determined, taking

the response time of evacuees into consideration. These models based on cell-based transmission involves in

a formulation for a time-expanded static graph with each link replaced by a group of cells. This methodology

may not yield quicker results for an evacuation problem considered over a larger space and time, and this

may be a necessity in an emergency situation. The complexity of the models will further increase when they

consider more complex features, such as user-equilibrium constraints, congestions management, dynamic

demand, etc. This computational difficulty could be overcome by aggregating the nodes of the network

under consideration and solving the problem in a smaller graph. The efficiency could also be improved by

increasing the coarseness of the discretization of time depending on the accuracy of the results desired. The

models suggested an evacuation procedure with single destination or sink, which cannot handle multicom-

modity flows to identify optimal destinations. In Golani and Waller (2004), the authors suggested a heuristic

to the cell-based transmission model with multiple destinations to overcome this implementation difficulty.

However, the accuracy of the heuristic and its convergence when the problem size grows is a question of

consideration. In Chalmet et al. (1982), the concerns in a time-expanded evacuation problem are provided

in detail. Time-expanded networks, while having computational limitations in large-scale evacuations, might

benefit the small-scale networks such as the building evacuation as the network under consideration is quite

small compared to large scale evacuation networks. A pseudopolynomial algorithm for solving the maximum

dynamic flow and quickest flow problems with a time-varying travel time, node and arc capacity was pro-

vided in Miller-Hooks and Patterson (2004). We refer to Kuligowski and Peacock (2005) for more details on

small-scale evacuations, where they made a comprehensive review on the building evacuation models.

The variational inequality approach is another way of formulating the the DTA problem Bliemer and Bovy

(2003); Ran and Boyce (1996); Peeta and Ziliaskopoulos (2001); Ban et al. (2005). Variational Inequality

provides a convenient formulation technique for network equilibrium problems arising in economics, finance

and transportation. It was put forth by Hartman and Stampacchia (1966) to study partial differential equa-

tions problems. In Dafermos (1980), the authors studied the equilibrium problems in transportation networks

applying variational inequality for a static travel demand. A finite dimensional variational inequality problem
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could be stated as: Given a subset k ⊂ Rn find a vector x∗ ∈ k such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ k (15)

where F : k → Rn is a continuous function. In case of the transportation problem, the F is the cost function

and x is the flow on an arc and n being the number of arcs in the network. The equilibrium conditions could be

viewed as Kuhn-Tucker conditions for a convex nonlinear problem. In Nagurney (1999), a detailed account on

variational inequalities and their applications to several equilibrium problems is given. A much wider range of

problems including multimodal transportation and elastic demands were discussed along with a discussion of

algorithms to network equilibrium problems formulated with variational inequalities. In Friesz et al. (1993),

a variational inequality formulation for a continuous time problem with dynamic route choices and departure

time decisions, a dynamic version of the static Wardropian user equilibrium, was provided. It considers the

path costs realized through travel time and penalty for early or late arrival time and the optimal flow

pattern is simultaneous route departure equilibrium. As the model is dealt in a continuous time domain, it

might lack a good algorithm to efficiently solve complex integrals on the path costs presented in the model.

Another continuous time model for transportation networks was provided in Raciti and L.Scrimali (2004).

They considered a single commodity problem with elastic demand and a time-dependent equilibrium and

expressed the corresponding equilibrium problem as quasi-variational inequality. The subset k ⊂ Rn in

equation (15) is replaced by a point-to-set map K : E → Rn. Brotcorne et al. (2002) presented another

variational inequality based equilibrium problem for a multicommodity flow problem where the user’s desired

origin-destination pair and departure and arrival time window is provided. A detailed section of variational

inequality models in the transportation framework was provided Ran and Boyce (1996).

Non-Deterministic Methods

Significant work has been done on evacuation problems from non-deterministic perspective. Smith et. al

have done substantial work on stochastic evacuation network Smith (1993); Smith and Towsley (1981); Smith

(1987). They provide non-inferior solutions to bi-objective routing problem in queueing networks. The two

objectives modeled were the distance traveled and the clearance time. The problem also considered the mul-

ticommodity flow problem. They provided a path based bi-objective formulation with flow conservation and

capacity constraints for all the routing alternatives. The routes are generated and fed to the above formu-

lation by an algorithm that iteratively generates candidate paths to assess congestion. In Talebi and Smith

(1985), gave an overview of deterministic, stochastic and hybrid methods for evacuation problems and com-

pared a analytical queueing network with a simulation model for a hospital evacuation considering evacuation

time, congestion and optimal routes. In Opasanon (2004), two solutions were provided, one with optimal

evacuation route and another with set of strategies from which the evacuee can choose the best arc at

each step. They dealt the evacuation problem on network with stochastic, time-varying travel time. In

Waller and Ziliaskopoulos (2001), the authors considered a stochastic dynamic network in which the origin

destination demand are random variables with known probability distributions. A linear programming for-

mulation based on the system optimal dynamic traffic assignment propagating traffic by cell transmission

was provided. The results are robust as they build a confidence level which requires the solutions to meet

the expected demands. In Ozbay and Ozguven (2007), the authors incorporated capacity constraints in cell

transmission model for system optimal dynamic traffic assignment. The capacity constraints are probabilis-

tic in nature due to the impacts of the disaster. They also compared the model to one with a deterministic

capacity. In Bakuli and Smith (1996), the resource allocation problem was studied in the emergency evac-

uation network. They employed queuing theory to model the varying capacities circulation spaces, such

as finite-sized corridors, staircases etc. and study their effects on throughput. The evacuees in this model
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experience a service at the evacuation nodes and this service rate decays with the increasing amount of

traffic.

Significant Features in Optimization Techniques

This section will discuss the factors that are widely regarded to influence the evacuation efficiency. While

some of them are only germane to optimization techniques, the rest will be revisited when we discuss the

simulation techniques.

Contra Flows

A contra flow or reversible flow is a strategy to improve the efficiency of evacuation by allowing traffic in

the opposite direction of the roads during an emergency. Most of the recent evacuation plans proposed

incorporates contra flow in them. The contraflows while being efficient in evacuation they come with a few

pitfalls like increase in accidents and operation cost, which might be a consideration for their implementation

in the evacuation plans Bretherton and Elhaj. (1996).

Consider the following lane reversal problem: Given a directed graph G(V,E) with non-negative arc

capacities and travel times, a subset of nodes S as sources and planning period or horizon T, determine the

quickest time to evacuate all the occupants from source to destination by allowing lane reversals. A single

source, single sink contraflow problem is polynomially solvable, but a multiple source and sink problem

becomes strongly mathsfNP-hard Rebennack et al. (2008). Thus, even simple cases of the problem is hard

to solve and researchers have to resort to heuristic. Simulation procedures could be performed for a given

configurations of networks and hence may not be a suitable tool to identify optimal lane identification, but

the analytical procedures are not computationally efficient even for simple models without complex features

Wolshon et al. (2001).

In Kim and Shekhar (2005), the authors proposed two heuristics to solve the evacuation problem with

contra flow more than one source and destination. The first heuristic was proposed for a time-expanded static

graph GT (VT , ET ). The heuristic runs on a time expanded graph, making it less attractive for large-scale

evacuation with large number of nodes and with evacuation planned over a bigger time frame. The second

heuristic proposed was a simulated annealing procedure. The algorithm begins with solution and perturbs

it a little to obtain a better solution and this iterative procedure is carried out until a stopping condition is

satisfied. This is a standard technique employed to escape local minimum and obtain values close to global

minimum. A similar tabu-based heuristic algorithm to solve lane-reversible evacuation problem was proposed

in Tuydes and Ziliaskopoulos (2006b). It is a local search procedure attempting to get the best solution in a

given neighborhood. The system optimal dynamic traffic assignment model for the cell-based transmission,

which was described in section 2.2, is considered for the implementation of contraflows and it permits partial

capacity reversal, unlike the former approach. In another work Tuydes and Ziliaskopoulos (2006a), they

formulated the dynamic traffic assignment model with lane reversible capabilities. This information could be

used as an efficient initial solution for the tabu-based search. The models discussed are simple flow problems

with lane reversal capability and is far from being practically realizable. The models could however serve as

a good preprocessing technique to identify the lanes to be reversed and then a more complex model could

be employed on a reconfigured network. The heuristics developed to solve them, though computationally

efficient, does not have any theoretical guarantee in the quality of the solutions. Thus the issue of scalability

is a concern, as the quality of the solution could be compromised with the problem size. Approximate

solutions to the contraflow problems for such guarantees is still an open area of study.
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Evacuee Behavior

Like contra flows, another factor that is incorporated in the evacuation models in the recent years is the

the response time of the evacuees. The response time is the time taken for a decision by the evacuee to

evacuate. This latency could be due to the inefficiency in the information dissemination, panic in evacuees

or the emergency situation itself. Conventional models disregard this, assuming zero loading and unloading

time. In Sattayhatewa and Ran (2004), the authors formulated a nuclear power plant evacuation through

bilinear programming and incorporated the response time of the evacuees. They used the formulation in

Ran and Boyce (1996) for dynamic traffic assignment. They proposed a departure model with the objective

of quickest evacuation time with one model departure time from origin and another model arrival time at

the destination. In Helbing et al. (2000), the authors simulated the escape panic situation in which the

clogging, jamming at widening, panic initiation and impatience are captured. This would help in validating

an evacuation model developed without considering human factors. However, the study was aimed to model

the pedestrian behavior, injuries caused due to congestion, uncoordinated passing of bottlenecks and physical

interactions among people. Thus careful scaling of parameters is required if we need to realize this in larger

network with vehicular motions. The model would more serve as a tool for calibration than for establishing

optimal routes of evacuation. The survey about human behavior in fire Bryan (2000) gives a gist of the

influence of evacuee behavior on models. The study caters specifically to the situation caused by fire and

certain concerns raised, such as smoke effects, fire alarms, cannot be extended to a generic situation. This

would help in a similar fashion as the previous model in setting standards for an evacuation model and

features to be identified in a model. A model was developed in Fu and Wilmot (2007) to predict the response

behavior of hurricane Andrew in Louisiana and they were found to be similar to hurricane Floyd in South

Carolina. The response curve could be used to model response behavior in evacuation models. Since the

study was performed and tested for behavior during hurricane, response behaviors during situations such

as event management, nuclear accidents, fire hazards, and no-notice evacuations needs to be analyzed in

order to assure its generic applicability. Chen and Zhan. (2006) provided the measures for efficiency of an

evacuation plan. Among the various factors they considered, the loading curve of the time taken for evacuees

to decide to evacuate was considered as a major factor, as this is crucial in determining the travel time of

the individual evacuees. In Murray and Mahmassani (2004), the authors suggested that the panic situation

as result of a danger results in the evacuees to move at random before restoring order, especially when they

want to find the family members before trying to reach safety. They proposed a two-stage formulation to

establish household trip chain sequence. In the first phase, the optimization model determines a meeting

location for the family, and the second phase comprises of the trip assignment to evacuate people to safety.

The strategies are later supplied to a simulator to study the effects of reassignment. It provides a different

perspective to behavior modeling but not the only feature to be captured.

In case of a large-scale evacuation system, where the travel time is much larger compared to the re-

sponse time of the evacuees, the error in the case of excluding the response time would be very minimal.

However incorporating it might increase the complexity of the optimization model and hence decrease the

computational efficiency. The implementation in two different phases, like that of contraflows, in order to

overcome this problem could also be difficult as the behavior modeling dynamically changes the traffic flow.

This is should be a another factor taken into consideration while developing a model. Sometimes behaviorial

response is related closely to the situation and may be different at different times.

Dynamic Origin-Destination Demands

An observation on the most difficult obstacle before deploying DTA is estimating the time dependent demand

was made in Peeta and Ziliaskopoulos (2001). The demand between origin-and destination in an evacuation

problem is typically subject to the environmental changes. For instance, an evacuation scenario, which just
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requires the evacuees to reach safety, might not route passengers to the initially designated destination, as

this would compromise the evacuation time. This could be because of any unforeseen circumstances such

as congestion, road blockage, lane reversals or unavailability of shelter. Most researchers have assumed to

have origin destination data available a priori and they don’t change over time. Later, the analysis was

carried out on a static demand. In Yuan et al. (2006), the authors formulated an evacuation problem where

the origin destination pairs are not fixed. Given a set of origin or destination, the objective is to ship

all the commodities from the origin set to any subset of destination nodes. This is more intuitive in an

evacuation process, where the safety of individuals is the priority. This could be achieved through a simple

transformation in which a dummy super-sink node is added with zero cost and infinite capacity arcs from

all other destinations. Given an directed graph G(V,A) and set of origins I and destinations J with arc

capacities c(a), ∀a ∈ A and cost function h(x(a)). Let Dij be the demand matrix between OD pair. Now we

have the following static demand evacuation problem.

Minimize
∑

∀a∈A

h(x(a)) (16)

s.t.

x(a) =
∑

∀r∈R

δarpr, ∀a ∈ A (17)

∑

∀r∈Rij

pr = Dij , ∀i ∈ I, j ∈ J (18)

0 ≤ x(a) ≤ c(a), ∀a ∈ A (19)

R is the set of all paths between all origins and destinations, pr is the flow along the rth path and δar is

indicator variable with value 1 is arc a is in path r and 0 otherwise. Constraint set (18) will be replaced by

∑

∀r∈Ri

pr = Di, ∀i ∈ I (20)

for the single destination.

This is another formulation for a time-expanded static graph, having all the drawbacks, with regards

to computational efficiency, mentioned earlier. The model when assuming independent evacuees as flow

variables, assume that the different family members could reach different destinations. As a path-based

model has been presented, the scalability of the model needs more examination as the analytical techniques

using path or route-based modeling needs to consider exponentially many paths available. The sequential

logit model was applied to the model the dynamic traffic demand for evacuation problems with the underlying

assumption that the demand varies with the evacuee behavior Fu and Wilmot (2004) . The time horizon is

discretized and the decision to evacuate at each time interval is modeled as a sequence of binary decisions.

Later the probability that a household will evacuate at a specific time is calculated using random utility

theory, which in turn is used to estimate time varying demand. The problem of updating origin-destination

matrix based on the traffic link count has also been studied in Stathopoulos and Tsekeris (2004); Zhou et al.

(2006). The formulation allows traffic flow according to the traffic conditions and they are brought under

an entropy maximization framework. Another useful study in this line was in Yuan et al. (2007), where

they compared two models of compliance and non-compliance to predetermine the route and destination

assignments for evacuation using simulation software. It was proposed in Theodoulou and Wolshon (2004),

a genetic algorithm to estimate the dynamic demand between the origin destination pair. The method is

based on the fact that dynamic demand OD matrix depends on spatial and temporal variations of congestion,

or in other words, the variation in demand is based on the traffic count on a link. The congestion of link

and hence a specific path from an origin to destination would cause the optimal solution to seek an alternate
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path causing an alteration in demand. The genetic algorithms tries to find the optimal OD demand matrix

from the seed OD matrix provided as input.

Multimodal Transportation

Multimodal transportation is realistic in an emergency situation and it also considerably affects the evacua-

tion efficiency. It is therefore essential to incorporate mode choices in the models in order to develop precise

models. A formulation based on cell transmission provided in Chang and Ziliaskopoulos (2004) permits in-

termodal transportation with cars and buses for a single destination network. The formulation was a system

optimal integer linear programming. Thus the corresponding flow problem is a bimodal transportation for

a single commodity. The model assumes no pedestrian movements, but transit cells are considered where

evacuees can move to another vehicle. The model is a very basic model and has several assumptions that

makes it practically infeasible. For instance, the model assumes that there is an unlimited supply of buses

and cars. Also, the model contains enormous amounts of integer variables and constraints. Addition of mul-

ticommodity flow constraints would make the model even more complex. In Blum and Eskandarian (2004),

the authors studied the influence of multimodal transportation on the evacuation efficiency in building com-

plexes. They extended the cellular automata model, where space is divided into cells and time is discretized

such that vehicles can move from one cell to another in one time step, to capture the interaction between

pedestrians and vehicle behavior. To overcome the computational complexity posed by the formulations

in the optimization models, investigators explored heuristic algorithms to solve the evacuation problem. In

Liu et al. (2007), the authors proposed a heuristic algorithm, HASTE, which provided a close approximation

to the optimal solution that could be achieved through a linear program for the cell based dynamic traffic

assignment problem. This overcomes the difficulty of the computational time spent on the overwhelming

size of the problem at a price of approximating the optimal solution. The accommodation of multimodal

transportation usually increases the precision of the model as it is more realistic and also the evacuation

efficiency. However, it increases the complexity of the model as a whole and decreases the computational

efficiency.

Miscellaneous Factors

The key logistical issues during the aftermath of a disaster have been carefully analyzed in Holguin-Veras et al.

(2007). The response and recovery operations such as supply of food and medicine on reduced capacity net-

work are discussed. The research was based on public accounts and interviews made during the field visits to

Hurricane Katrina-impacted areas. Another interesting study in the context of evacuation is to examine the

vulnerability of the network and identify the insecure links in the network. It is important because it accounts

for the connectivity between the origin and destination during evacuation. This may allow us to estimate the

arc or link capacities of the network for evacuation. In Tuite and Mahmassani (2004), the vulnerability of a

network using a vulnerability index was studied and it was aggregated over all origin destination pairs. A

topological index to determine the depressiveness/concentration, which helps in identifying isolated districts,

was provided Sakakibara et al. (2004) and estimates the robustness of the road network in an emergency

situation. The travel choice is tied to the vulnerability of the network. The change in the demands and

flows owning to disruptions in the network was also studied in Chen et al. (2007). They formulated a travel

demand model to derive a measure to assess the vulnerability of a transportation network. The measures are

capable of valuating the changes in both demand and supply. In Chen and Zhan. (2006), the authors used an

agent-based simulation technique, PARAMICS, to compare the staged and simultaneous evacuation. They

concluded that for a general network topology there is no specific strategy that results in better evacuation

efficiency. However, a high-density population could be evacuated quicker over a grid-structured network by

staged evacuation.
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Simulation Techniques

The large size and time over which the optimization models have to be implemented make them less suitable

for immediate realizability. Simulation-based approaches for evacuation strategies are widely adopted to

overcome this practical difficulty. Also, simulation-based models could be a tool to study the current plans

without actually executing it. The evacuation plans generated by the analytical models discussed above

could be simulated to identify inconsistencies in the model, thus serving as a good instrument for validation.

The simulation models permit the designers and researchers to visualize the evacuation and hence it is more

incisive compared to analytical models.

One level of breakdown of the simulation-based technique will be as macro, micro or meso traffic simu-

lations. A microscopic traffic model captures the lineaments of individual vehicles, whereas a macroscopic

traffic model provides a collective vehicle dynamics. Macroscopic simulations are similar to fluid flow study,

where the estimates are based on a group of vehicles as a whole. Macroscopic simulations are not computa-

tionally expensive, but fails to adapt to random and rapid changes in the environment. Micro simulations

is a diametric simulation technique, where the characteristics of individual vehicles are captured and thus

able to predict and adapt to the changes in the model more efficiently than macroscopic simulations. The

disadvantage of this technique is the computational expense encountered as the system size grows and more

vehicles are added to the system. However, the micro-simulators are getting popular in the recent years with

the increase in the computational capacity. A detailed note about macro and micro simulations and their

relative advantages and disadvantages is discussed in Pidd et al. (1993).

Microscopic Simulation Techniques

Agent-based simulations are also called as micro-simulators, as the agents or drivers involved in the system

could be studied individually. In most traffic simulation studies there is a need for the simulation to be

performed with more precision. For instance, vehicular interactions during congestion lane change or traffic

signals at intersections could be dealt only in a microscopic model. In Cova and Johnson (2002), the authors

performed an agent-based neighborhood evacuation study. The model has a nice property to study the

disaggregate outputs such as the vehicle safety and travel times within zones rather than average travel

time of entire system. However, some of the assumptions are rigid such as departure times were assumed

to be available and the destinations were preassigned. These assumptions may not be preserved in real-

time situation. The topology of the tested network was relatively simple compared to real-time networks.

It will be interesting to compare the computational efficiency when tested real time with features such

queues, spill overs and congestion. The PARAMICS is a micro-traffic simulation software widely used in

simulation. Many simulation-based evacuation studies deployed PARAMICS for traffic simulation studies.

In Church and Sexton (2002), the authors developed a simulation model using PARAMICS to simulate

the evacuation of a high-risk area in Santa Barbara called Mission Canyon Neighborhood. The model is

used to analyze the possible evacuation scenarios changing traffic control, number of vehicles per household,

opening of alternate exit and critical links in the network. Although these may not be the optimal ones,

they are validated strongly based on empirical observations. The simulation provides the lower bound on

the actual evacuation time as evacuee behavior is not considered and demand and arrival time estimates are

not accurate. But the simulation results providing the best scenario in terms of the evacuation time might

be indicative of the necessary factors to keep in mind in an emergency situation. In another study, In Chen

(2006), PARAMICS was employed to compare the efficiencies of staged and simultaneous evacuation studied

under free-flow and congestion situation. The study was performed for different network topologies. They

made some simplistic assumptions like availability of route choices, destination information that prevents it

from immediate realization. The findings, which include staged evacuation during congestion, would guide

the design of new models. The aggregation of areas into zones is a technique employed to gain computational
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efficiency, but with a compromise in the precision. The default rules of PARAMICS for trip generation and

destination and route choices were used for the simulation. They also provided a review of agent based

simulation models and explained its advantage. They performed the simulation over three types of networks

namely ring, grid and an actual road network. The study indicated that staged evacuations based on

zones are more efficient than simultaneous evacuation. The models assume that the drivers are assumed to

take the shortest path, which leads to frequent congestion, and hence the results may not reflect the best

simultaneous evacuation time. CORSIM is another micro-simulation software used for traffic simulation.

CORSIM is a combination of two other microsimulation models namely NETSIM and FRESIM, which are

used for traffic simulation in surface streets and freeways respectively. In Sisiopiku et al. (2004), CORSIM

was used to create a transportation model for Birmingham. The generated model was then used to test

several emergency scenarios. They also made a brief review of micro-simulated evacuation models and

discussed the vital features of CORSIM. Several response actions such as traffic diversions, altering signal

timings, roadway clearance and access restriction were incorporated in the testing. The simulation model

was then tested on different scenarios, namely: a discrete traffic event, evacuation situation and simulation

of available response plans. The performance measures, which includes speed, queuing length and queuing

time, were not justified to be the best set, and they do not guarantee that the simulated results correspond

to the most efficient solution corresponding to the assumptions made. The extensibility of the model is

a concern for networks besides the networks examined under the same settings. The model will not have

immediate realizability, but is useful in validating and calibrating models and the recommendations with

respect the measures that were focussed in the study. CORSIM was also used to test the efficiency of contra

flows or lane reversal under various evacuation scenarios Williams et al. (2007). The study was carried out

in very plain settings, just to test the effectiveness of lane reversal of the link in a network. The study

could serve only as a guide to evaluate the lane reversal efficiency rather than stand alone model to establish

evacuation routes. The simplicity of the model makes it computationally efficient to obtain quick results. We

discuss the demerits of establishing lane reversal strategies using simulation techniques in section . Another

popular micro-traffic simulation software, VISSIM, is also used in evacuation studies. In Yuan and Han

(2005), VISSIM was used for nuclear power plant accidents with dynamic traffic assignment and most

desirable destinations. In Tagliaferri (2005), a comparison was provided of VISSIM and CORSIM with the

demand estimates provided by Federal Emergency Management Agency (FEMA) to study the efficiency of

lane reversals. Both these models indicated increased throughput and decreased queue with lane reversal

implementation. Throughput at key nodes, queue lengths and average speeds were considered to be the

efficiency measures of the evacuation plan. These efficiency measures were compared between a lane reversal

plan and a do-nothing plan. The evacuation scenarios were considered essentially for a reversing only two

vital links of the network. The lane reversals were considered for only the critical links of the network, but

the rest of the model is heavily dependent on the simulators used by the model. As microscopic simulations

keeps track of individual entities in the system it is computationally expensive and it was often used in small

scale evacuation systems. Also, the details kept by these models makes them more complex. Their function

logic gets complicated for operation and they often result in befuddling number of parameters that are tough

to keep track. However, this limitation is being slowly subdued with the advent of faster computers.

Macroscopic Simulation Techniques

As mentioned earlier macroscopic models captures the vehicles and their activities more coarsely compared

to its counterpart. Traffic is aggregated and the aggregated flow will be studied through model variables

such as speed, density and flow rate. NETVAC Sheffi et al. (1980) and MASSVAC Radwan et al. (1985) are

two popular macro-traffic simulation software. NETVAC models radial evacuation from risk area, similar to

evacuation during a nuclear accident. The travel demand is incidental in the model, since all the households
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within the risk area require evacuation. MASSVAC is a macroscopic simulation model developed for rural

networks and was tested on a small rural network in Virginia for several loading curves. It is comprised of a

community module to define the boundary of the hazard, a population characteristics module to determine

the population allocation spatially and an evacuation module that performs the actual traffic assignment.

It has a simple input structure and trip distribution. Later versions of MASSVAC have been developed to

incorporate complex features such as user equilibrium assignments. Oak Ridge Evacuation Modeling Sys-

tem (OREMS) is a popular macro-simulation evacuation simulator. Identifying bottlenecks and feasibility

of evacuation, establishing evacuation routes and identifying alternate conrod strategies are some of the

important features of OREMS. GIS interface, which is a useful add-on in the recent years, is also available

in OREMS. Moriarty et al., compared major macro-simulation softwares including OREMS, DYNEV and

ETIS where the factors influencing the evacuation response were identified and several enhancements were

suggested to improve the evacuation efficiency Moriarty et al. (2007). Most of these models were provided

with the evacuation demand, as an input to the model and the models are a coarse approximation of reality.

The increase in computational capacity in the recent years are making microsimulators more attractive, as

they could also provide precision in performing localized studies and networks of reasonable sizes. However,

macrosimulators could be integrated with microsimulators or analytical models. They could serve as quick

validators in evaluating a developed model. Also, the very large scale network are still a little far fetched for

analytical models and microsimulators and are mostly handled by macrosimulators. Macroscopic models are

much simpler compared to the microscopic models, when it comes to to calibration and computation. This

is only achieved through some shortcomings. They cannot be applied to instances that require individual

vehicular dynamics to be tracked. As the vehicle positions are not known in these models, the modern traffic

control systems such as ramp metering, lane change maneuvers and a few other features of intelligent trans-

portation systems cannot be captured by these models. Also, evacuation that requires modeling of human

behavior cannot employ macroscopic simulation studies for the same reason. The accuracy is compromised

by the aggregation of the traffic and network. They are more applicable in large scale evacuation with respect

to time and space, whenever these shortcomings are less realized.

Meso-Simulation Techniques

A new generation of simulators called meso-simulators are popular in the recent days. They combine the

pros and cons of the micro and macro simulators. The meso-simulators clubs the vehicles into packets or

platoons, which are then simulated as separate entities. In de Silva et al. (2003), CEMPS, a meso-simulator,

was employed to develop a spacial decision support system. This is very practical model in the sense that the

decision support system integrates the real time data obtained from geographical information system (GIS) to

make traffic decisions and a object oriented simulation comprises of decision modeling and dynamic analysis

components. CEMPS provides a convenient framework that permits this communication. The model does

not sufficiently clarify the computational and economic concerns that may arise due to the increase in the

size of evacuation network. In Gomes et al. (2001), the authors provided a meso-micro scale simulation study

using SmartCAP that allows monitoring and studying of aggregate traffic flow behavior such as density, flow,

and velocity and integrated it with a micro-simulator, SmartAHS, which is used to record the individual

details. The integrated simulator consists of “window” of the micro-simulator that communicates with the

meso-simulator. Essentially the vehicles are micro-simulated and the meso-traffic flow characteristics such

as velocity, flow rate, etc. are preserved. The claimed boost in the computational speed is pertinent to

specific situations by the use of meso-simulators. More precisely, the gain will be linear in terms of the

level of aggregation of vehicles into packets. This still cannot justify the phasing out of macrosimulators or

microsimulators. However, the level of aggregation will help in achieving the capability of a microsimulator

to the desired accuracy. DYNEMO Payne (1971) proposed another mesoscopic traffic flow model that was
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developed, where unit of a traffic flow is an individual vehicle unlike packets. The motion of the vehicles is

determined by their link’s traffic density. The function that gives the relation between traffic density and

speed is provided as an input to the model.

Integrated Techniques

Simulation techniques could be used in conjunction with analytical models in order to gain the best out of the

optimization and simulation techniques. The evacuation plans that are generated through the optimization

techniques could be a good lower bound on actual evacuation time, thus these plans could serve as a candidate

for simulators to identify the discrepancies in the model, foresee the requirements and capture the features

that were not incorporated in the optimization technique. In Sbayti and Mahmassani (2006), the authors

provided a bi-level, simulation-based approach to solve the evacuation problem. At one level, the time-

dependent route assignments are determined, and at another level a dynamic loading problem is solved and

the output is later aggregated. The time-dependent route assignment is solved using the method of successive

averages, and the traffic-demand simulation is done using DYNASMART-P to estimate the vehicle trip times

and link travel times, thus achieving a system optimal schedule. The dynamic traffic assignment is implicity

handled by DYNASMART-P, relieving the optimization model. The model is computationally efficient, but

the gain in speed could be softened by the degree of accuracy of the heuristic with the increase in problem

size and the complexity due to new features when extended to other situations. In Zou et al. (2005), an

evacuation system was presented for ocean city integrating optimization and simulation techniques. An

evacuation plan is generated by the optimization module and the plan is revised by the results of simulation

evaluation. The pros and cons of the plans established were discussed. The model provides route choice

options that permits users to deviate from the available or pretested plans, but the model assumes the

availability of preestimated or forecasted demands. The formulation is based on cell transmission model

proposed in Daganzo (1994) with necessary flow conservation and demand constraints. The result of this

technique is a set of candidate plans, which could later be finalized using calibrated simulators. The results

were then evaluated with a microscopic simulation program. This cell-based formulation makes the model

more complicated in terms of the size and complexity, when dealt over a larger system, and the number

of plans that have to be stored and tested in the next phase. The method is comprehensive compared to

an integrated technique that produces one single solution, but makes it computationally unattractive. The

candidate set could be a limited set to overcome this undesired effect. A similar two-level optimization

method for evacuation of the ocean city was proposed in Liu et al. (2006b). At a broad level, they maximize

the throughput at the higher level in terms of the number of vehicles being evacuated and minimize the travel

time at the lower level. The cell-based formulation was made by accommodating cells of varying sizes in order

to decrease the complexity of the optimization model. In Liu et al. (2005), another integrated technique was

proposed in which the cell-based optimization model was used to formulate the demand constraints and the

flow and storage capacity constraints. The result of the optimization module is then fed as the input to

the microscopic simulator, CORSIM, which models real-time operational constraints and driver behavior

that were not captured in the optimization model. The evacuation systems proposed were modeled with

static demands. These integration techniques are very useful for a number of reasons. The evacuation plan

could be validated through simulation and hence can be reliable. The computationally expensive task could

be simulated and other operations could be optimized and thus they attempt to seek an optimal balance

between precision and speed.

Reviewed Features

A survey in Gwynne et al. (1999) identified 22 evacuation models and assessed them by grouping them based

on four different perspectives, namely enclosure; for example: the fineness or coarseness of a network, pop-
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ulation perspective where actions are taken based on individuals or by groups, behavioral perspective based

on how the occupants react to the environment and the nature of model applications. In Santos and Aguirre

(2004), a survey of simulation models was presented for emergency evacuation. They made a classification

based on modeling approach, namely flow-based, agent-based and cellular automata and discussed their

relative advantages from the perspective of evacuee behavior. A flow-based modeling comprises of nodes

representing the structures or places to and from the evacuees have to be moved and arcs mapping to the

hallways, roads, etc., that links these nodes. Since the individual characteristics are not emphasized in this

modeling, the practical realization of these models is impeded. However, if these models were used in con-

junction with analytical models, they could be very powerful tool in terms of both speed and precision. In

cellular automata the evacuation space is discretized into cells or grids with specific capacity and the entities

flow from one cell to another. The models based on cell-based transmission could be very accurate. In

Algers et al. (1997), 32 different micro-simulation models were analyzed and compared the features available

in the models. Scale of application, i.e. the size of the network that the model can handle, was one of the

features that were discussed in the papers. A detailed statistics of the objects and phenomenon that the

models included was provided. Queue spill backs, weaving, incidents and commercial vehicles were by and

large modeled. Indicators of objectives showed that the speed, travel time, congestion and queue length were

widely adopted by the models and indicators such as comfort and performance were rarely used. Analysis

of telematic functions and interface were also discussed. A comprehensive survey on simulation studies was

provided Radwan et al. (2005) and analyzed various simulation software that are available and presented

all the components considered for evacuation by these software. The categories of evaluation of the models

were modeling, behavior, operations and hazards. Most of these features have already been discussed. This

analysis provided a generalized framework for simulation studies of emergency evacuation.

Lane Reversals and Traffic Control

Contra flows or lane reversals are being considered in the simulation models just like in optimization models.

The recent trend and studies have indicated that there is a significant decrease in evacuation time with

the implementation of lane reversals. A more efficient way of controlling the traffic is by employing traffic

personnel. In Williams et al. (2007), traffic control was studied by capturing these scenarios and simulating

them. The travel time was significantly less for the instances with lane reversal. In Theodoulou and Wolshon

(2004), the authors undertook a research to study the effect of contra flow implementations in evacuation

in New Orleans. They employed CORSIM to simulate the freeway configuration and two other scenarios

with contra flow implementation. The study carried out various loading configurations of major highway

permitting contra flows. The experiments were used to demonstrate the benefits of contra flow. A significant

improvement in the measures of effectiveness, namely travel time and average speed, was achieved for the

configurations permitting contra flow. In most cases, the contra flows assume complete lane reversals, that

is, the entire capacity of the road is switched toward the destinations. There are a couple of reasons for

holding a capacity in either direction. In case of a large network, a link of the networks in either direction

could be used in a route to reach the destination. In case of a link failure, where alternate paths are required,

the reversed links can no longer be part of an alternate path to the destination. If this was not the case and

even if a link cannot be a part of route from origin to destination, these arc capacities could be used in a

routing problem where empty buses have to be routed back to pick-up points. Most of the papers currently

assume that there will be enough number of buses to support the evacuation by making just one trip. Thus

studies that identify the amount of capacities that has to be reversed within highway rather than complete

reversals are limited. Simulation studies are not the best way to study the effects of contra flow as they

need an input plan, which could be calibrated or validated, but cannot be a tool to identify the links or the

amount of capacities that has to be reversed. Analytical tools could be employed for this purpose and the
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plans could later be tested and verified in simulations.

Dynamic Demand Estimation

In a large-scale evacuation, the evacuation distance is large and assuming static traffic conditions are not

precise. DTA allows different traffic conditions to be included in the simulation. It captures the complex

dynamic demand pattern that arises due to congestion, queues, spill back and delays. There will be a

significant difference in the evacuation efficiency between static and dynamic demand. The factors that

results in the difference has been discussed before. The dynamic demand estimation through a simulator

may not be as difficult as the contra flows. In Antoniou et al. (1997), the authors provided a simulation

model with a demand predictive capabilities implemented as a part of DynaMIT simulator. The model

generates a pre-trip demand based on the historical demand and two systematic deviations based on daily

demand fluctuations and driver response behavior. The pre-trip demand is used to establish a disaggregate

pre-trip travel decisions for the drivers. Then a behavioral model is employed to exploit the available real

time data and alter route decisions. Then a disaggregate origin destination matrix is generated based on

the traffic count on the links of the network, which is then aggregated to estimate the new demand. The

model takes into account various factors including behavior pattern, daily demand fluctuations and a random

error component, thus giving more reliability to the model. The model employs a time discretization for

determining intervals between which the distance updates are made. This makes the model computationally

expensive based on the length of the interval. The question of consideration will be the capability of the

model to handle other features in addition to the dynamic demand estimation. This model was just an

extension of the work in Ashok and Ben-Akiva (1993). The demand estimation through update of historical

demand based on driver behavior and was further enhanced by systematic deviations in the newer models.

A similar method, QUEENSOD, Aerde et al. (2003) involves a seed matrix similar to the pre-trip demand

matrix based on historical demand. The seed matrix establishes traffic counts and a micro-simulator is used

to establish the traffic routes based on the estimate and then the seed matrix is altered to reduce the error

between the estimated and observed traffic counts.

Miscellaneous Factors

The number vehicles per household in micro-traffic simulation may be important as this increases the demand.

The use of critical links is a major factor in evacuation as it is important to ensure that the critical links are

not congested, which would result in heavy traffic disruption. Incident management is a minor feature that

models focuses on the need for alternate routes in case of accidents and estimation of traffic personnel for

diversion and lane control. In Mitchell and Radwan (2006), the impact of staged evacuation efficiency was

studied, where they considered six different scenarios and and they carried out simulation on a representative

traffic network that resulted in successful staged evacuations. The scenarios comprised of combinations of

shifting the departure times of evacuations. This resulted in increase in the total number of trips, but

prevented congestion and queues. They concluded that the departure time shifting and total number of trips

made had a positive impact on the clearance time.
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Network Flow Problems with Lane Reversals

We study contraflow network problems, wherein we try to maximize flow in a graph while permitting di-

rection reversals of an arc, resulting in a capacity increase in the direction of switch. The applications are

realized in an emergency situation, where people have to be ‘evacuated’ from a specific area; i.e. a football

stadium after a game, a city expecting a flood or hurricane, a zone where an unexploded ordnance device

has been found, or a region that has been attacked by terrorists. In most of these cases, the evacuees are

expected to leave the area of risk, the source(s), toward a safer place, the sink(s). A flow toward the source

is undesired during most of these scenarios and we do not expect the evacuees to go in this direction. As

a direct consequence, all the arcs that are not a part of any path from the source node(s) to the sink(s)

might be left unused. One can even encounter idle arcs during certain scenarios, such as managing a football

event, wherein we do have some amount flow toward the source. These idle arcs could be used to increase

the efficiency of evacuation by reversing their directions. The scenarios involving in partial lane reversal

capability could be captured with appropriate graph transformation. We discuss several scenarios that may

arise during the reconfiguration, which includes permitting only a subset of arcs to be reversed, imposing a

switching cost to the arcs involved in the reversals.

There are very few optimization techniques in the literature handling arc reversals. Kim and Shekar

Kim and Shekhar (2005) proposed a simulated annealing procedure for this problem and provided empirical

results. They also provide a sketch of the proof that the problem is NP-complete. A tabu-based heuristic

was proposed by Tuydes and Ziliaskopolos Tuydes and Ziliaskopoulos (2006b) for the problem. They

focus their study on a specialized version, where they permit lane reversals with partial capacities. Hamza-

Lup et al. Hamza-Lup et al. (2004) proposed a heuristic for this contraflow problem. These techniques and

their pitfalls were discussed in Kim and Shekhar (2005). A few other studies in the literature that are not

analytical in nature were also proposed. They rely on simulation-based methods and decision support tools

Theodoulou and Wolshon (2004); Williams et al. (2007).

In this chapter, we provide a detailed study of the arc reversal (or contra flow) problems with respect

to their computational complexity. The motivation is to introduce the problems formally to provide a basis

for further research in this area. As the applications are mainly realized during emergency situations, the

dynamic flow problems are of principal interest, but we study static cases as presuppositions and also for the

sake of completeness of the study. We provide a brief background of the network flow problems and explain

the terminology used in the rest of the chapter. We then provide a discussion of static flow problems.

A polynomial time algorithm through a graph transformation is introduced for the static maximum flow

problem with arc reversal capability. The result is evident and it is useful in showing that the dynamic

maximum contraflow problem, with single source and single sink, is polynomially solvable. We show that

the the decision version of the multiple sources and multiple sinks version of the problem is NP-complete

through a reduction from 3-SATISFIABILITY (3SAT). We show that the problem becomes NP-complete

by having just two sources or sinks. In addition, we discuss the inability of the graph transformation that

was employed earlier to provide feasible solutions. We finally show that the problem of finding the minimum

total cost, incurred due to an arc switching cost, to identify the arcs to be reversed is NP-hard, even in the

static case.

Background

The basic terminologies and definitions that are predominantly used in the network flows literature and that

are essential for the rest of the chapter are explained in this section.

Definition 1 (Static feasible flow).
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Given is a graph G = (V,A) with capacities ce ∈ Z
+ for all arcs e ∈ A. A static flow, characterized by the

function f : A→ R
+, with value v, from s ∈ V to t ∈ V is feasible, if

fe ≤ ce, ∀e ∈ A (21)

∑
(i,j)∈A

fi,j −
∑

(j,k)∈A

fj,k =





v, j = s

0, ∀j ∈ V \{s ∪ t}
−v, j = t

(22)

We call node s as the ‘source’, node t as the ‘sink’ and rest of the nodes as ‘intermediate’ or ‘transhipment’

nodes.

Equation 21 ensures that the flow fe along each arc e ∈ A meets the capacity constraints; as we assume

all lower bounds on the flow to be 0. In equation 22, the net flow out of s is v and t is −v. For all intermediate

nodes it is 0 and is also referred to as flow conservation. The definition of a feasible flow generalizes in a

natural way for the case of multiple sources and multiple sinks.

A sequence of distinct nodes x1, x2, . . . , xn of a graph G = (V,A) is called a chain if (xi, xi+1) ∈ A, ∀i =

1, . . . , n. A chain is also referred to as a directed path. Let P be the set of all chains from s to t. We define

another flow function, h : P → R
+, in terms of the flow along the chains from s to t. A feasible flow f with

value v could be decomposed into a set of chains, P , from s to t, such that

v =

|P |∑

i=1

hi .

The process of obtaining flow along the chains this way is called as ‘chain decomposition.’ A more

detailed account of these terminologies could be found in Ahuja et al. (1993); Ford and Fulkerson (1962).

In a dynamic graph or network G = (V,A) each arc is associated with a travel time, t : A→ R
+, besides

the capacity function. The graph expanded over T time periods, GT = (V T , AT ), is obtained by replacing

each node by T copies and having nodes vl
i and v

l+ti,j

j connected in GT = (V T , AT ) if vi and vj are connected

in G, for all l = 0, . . . , T − ti,j . This concept of a feasible flow can be directly adopted to the dynamic case

by ensuring that both equations 21 and 22 are satisfied for all discrete time steps. Hence, a feasible dynamic

flow is a feasible flow in the time expanded graph with the value equal to the sum of the net flows out of all

the T copies of s. For more details about time expanded graphs refer, for instance, to (Ahuja et al., 1993,

Chapter 19.6).

Maximum Static Contraflow Problems

In this section, we provide a polynomial time algorithm solving the maximum contraflow problem in a static

graph. The results presented in this section are very basic and straightforward. Nevertheless, we discuss

them in detail as this helps us in developing the main results later.

Now, let us define the maximum flow problem with arc reversal capability.

Definition 2 (Maximum Contraflow (MCF)).

Instance: Given a directed graph G = (V,A) with source s+ ∈ V , sink s− ∈ V and capacity ce ∈ Z+ on

each arc e ∈ A.

Question: What is the maximum flow from node s+ to node s− if the direction of the arcs can be reversed?
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This problem is also called maximum flow problem with arc reversal. Consider now procedure P-MCF. In

the first step, an auxiliary graph G̃ = (V, Ã) is constructed. The transformation from the original graph G is

obtained by summing the capacities of arcs (i, j) and (j, i). This allows us to reduce the MCF problem to the

maximum flow problem on the transformed graph in step 2. Step 3 removes cycle flows in the transformed

graph. This ensures that the constructed solution of the MCF problem in step 4 is well defined.

Procedure Maximum Contraflow (P-MCF)

1. Construct the transformed graph G̃ = (V, Ã) where the arc set is defined as

(i, j) ∈ Ã, if (i, j) ∈ A or (j, i) ∈ A ,

The arc capacity function c̃ is given by

c̃i,j := ci,j + cj,i ,

for all arcs (i, j) ∈ Ã.

2. Solve the maximum flow problem on graph G̃ with capacity c̃.

3. Perform flow decomposition into path and cycle flows of the maximum flow resulting from step 2.
Remove the cycle flows.

4. Arc (j, i) ∈ A is reversed, if and only if the flow along arc (i, j) is greater than ci,j , or if there is a
non-negative flow along arc (i, j) /∈ A and the resulting flow is the maximum flow with arc reversal for
graph G = (V,A).

End procedure

We have the prior knowledge that there exists an optimal flow to the maximum flow problem that does

not have cycles. Thus, arcs on either direction will never be used in this flow for the maximum flow problem.

This is the basic idea of procedure P-MCF that motivates the graph transformation given.

Theorem 1 (Proof of correctness). Procedure P-MCF solves the maximum flow problem with arc reversal

for graph G = (V,A) optimally.

Proof. The proof consists out of two steps. First, we show that any solution of the procedure P-MCF is

feasible for G = (V,A). Second, we show its optimality.

For feasibility, we only have to show that step 4 in the algorithm is well defined; i.e. not both arcs

(i, j) and (j, i) have to be switched. However, this is ensured by step 3. The optimal solution after the flow

decomposition results in a set of paths from source to sink and a set of cycles with positive flows. After the

flow decomposition we could cancel the positive flows along all cycles and ensure that there is no flow along

any cycle. This ensures that there is either a flow along arc (i, j) or (j, i), but never on both arcs. Hence,

the resulting flow from step 4 is a feasible flow with arc reversal for graph G = (V,A).

Now, we prove that the resulting flow is also optimal. Note that any optimal solution to the maximum

flow problem with arc reversal on graph G = (V,A) is also a feasible solution to the maximum flow problem

on the transformed graph G̃ = (V, Ã). As the amount of flow send from s to t is not changed in steps 3

and 4, the resulting flow is an optimal solution to the maximum flow problem with arc reversal on graph

G = (V,A).

The running time of procedure P-MCF is dominated by solving a maximum flow problem in step 2 and

by the flow decomposition in step 3; as steps 1 and 4 can be done in O(|A|). Let us denote the running

time for solving the maximum flow problem by S1(|V |, |A|) and for the flow decomposition problem by

S2(|V |, |A|). Then, the running time of procedure P-MCF is given by O(S1(|V |, |A|) + S2(|V |, |A|)). Using
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the highest-label preflow-push algorithm leads to S1(|V |, |A|) = O(|V |2 ·
√
E), Cheriyan and Maheshwari

(1989). The flow decomposition can be done, for instance, in O(|V | · |E|), Ahuja et al. (1993). This proves

the following theorem.

Theorem 2 (Running time). Procedure P-MCF solves the maximum contraflow problem in strongly poly-

nomial time.

We are now able to extend the result above to the case of multiple sources and multiple sinks. This

problem is also called maximum transshipment contraflow (MTCF) problem.

Corollary 1. The static version of the maximum contraflow problem with multiple sources and multiple

sinks is polynomially solvable.

Corollary 1 can be realized through a simple reduction. Let S+ and S− be the set of sources and the set

of sinks, respectively. Then, add a ‘super-source’ u+ and a ‘super-sink’ v− together with the arcs (u+, s+),

for all s+ ∈ S, with arc capacities equal their respective surplus and (s−, v−) for all s− ∈ S− with their arc

capacities equal their respective deficits. For more details, refer to Ford and Fulkerson (1962).

Recognize that we basically show in this section that the maximum contraflow problem is equivalent to a

maximum flow problem on an undirected (modified) graph. This could be seen in the graph transformation

provided in step 1 of procedure P-MCF with arcs having same capacities in either directions.

Maximum Dynamic Contraflow Problems

In this section, we discuss the maximum dynamic contraflow (MDCF) problem. The maximum dynamic

flow problem was studied by Ford and Fulkerson Ford and Fulkerson (1962), where they try to maximize

the flow sent from source to sink, within a given time horizon T . Unlike the static case, in the dynamic

network flow problem the flow over an arc can be repeated over time. Ford and Fulkerson proved that

this problem is equivalent to solving a minimum cost flow problem with the arc costs as travel times on the

arcs. Then the optimal flow on the arcs from source to sink is decomposed into a set of paths or chains.

These chains are then temporally repeated over time to obtain the required dynamic flow. In other words,

there is always a temporally repeated chain flow that is equivalent to the maximum dynamic flow. Let us

assume there are P paths obtained from the chain decomposition of the optimal minimum cost flow. Then

the maximum dynamic flow is given by

∑

i∈P

(T + 1 − ti)hi ,

where hi is the flow along the ith path and ti is the time taken to travel the ith path. In this section, we

first study the single source and single sink dynamic flow problem having arc reversal capability. We provide

an algorithm employing a similar kind of graph transformation as procedure P-MCF and discuss its proof

of correctness together with its worst case running time analysis. This implies that the quickest contraflow

(QCF) problem is also polynomially solvable. In the quickest flow problem, the time to send a given flow

from source to sink is minimized. Burkard et al. Burkard et al. (1993b) gave a strongly polynomial time

algorithm for this problem.

Hoppe Hoppe (1995) studied the multiple sources and multiple sinks version of this problem, also called

the quickest transshipment problem, where they minimize the time taken to send the supply at the sources

to the sinks satisfying their demands. In static network flows, the multiple sources and multiple sinks

are handled by adding a ‘super-source’ and a ‘super-sink.’ Then they are connected to the sources and

sinks respectively, see Corollary 1. However, this solution procedure is not applicable in a dynamic case
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anymore. For the same reason, the dynamic contraflow problem with multiple sources and multiple sinks is

NP-complete. We provide an example illustrating this together with a proof of its NP-completeness.

Single Source and Single Sink

Let us extend the MCF problem to the dynamic case.

Definition 3 (Maximum Dynamic Contraflow (MDCF)).

INSTANCE: Given a directed graph G = (V,A) with source node s+ ∈ V , sink node s− ∈ V , capacity

ce ∈ Z+ and transmission time te ∈ Z+ on each arc e ∈ A with ti,j = tj,i if (i, j), (j, i) ∈ A, and an overall

time horizon T ∈ Z+.

QUESTION: Determine the maximum amount of flow that can be send in T units of time from source s+

to sink s−, if the direction of the arcs can be reversed at time 0.

Note: In this case, if we choose to switch an arc, it remains switched from time 0 to T . The case where we

allow switching of arcs back and forth in time is trivial as the quickest transhipment contraflow problem, with

this assumption, reduces to the quickest transhipment problem through the graph transformation suggested in

procedure P-MDCF and hence is polynomially solvable.

Definition 3 states that in a MDCF problem, the graph is allowed to be asymmetric with respect to the

arc capacities. However, whenever both directions of an arc are included in the graph, then the traveling

time of these two arcs must be the same. This assumption implies that the switching of an arc only changes

the capacities of the arcs but does not alter their traveling time.

The concept of temporally repeated flows is very fundamental for the maximum flow problem with single

source and single sink. Our algorithm for solving the MDCF problem is mainly based on this concept. Hence,

let us repeat the definition given by Ford and Fulkerson, (Ford and Fulkerson, 1962, page 147).

Definition 4 (temporally repeated).

A dynamic flow that can be generated by repeating chain flows of a static flow in graph G is called temporally

repeated flow.

The following theorem reveals the usefulness of temporally repeated flows in the context of single source

and single sink network flow problems, (Ford and Fulkerson, 1962, Theorem 9.1).

Theorem 3. There is a temporally repeated dynamic flow that is maximal over all dynamic flows for T

periods.

The flow to be temporally repeated could then be determined by just solving a minimum cost flow prob-

lem. Let us denote its running time by S3(|V |, |A|). Using, for instance, the minimum mean cycle-canceling

algorithm leads to a strongly polynomial running time of O(|V |2 ·|E|3 ·log(|V |)), Goldberg and Tarjan (1989).

Before we proceed to the next lemma, we need to know that utilizing the concept of time expanded graphs

in a solution algorithm leads to a pseudo-polynomial running time. In this case, the running time depends

on |T |, rather than log(|T |) which would then lead to a weakly polynomial running time. Nevertheless, we

use the concept of time expanded graphs in Theorem 4.

Consider now procedure P-MDCF. We show in Theorem 4 that it solves the MDCF problem correctly.

The main differences of procedure P-MCF and P-MDCF is given in step 2. For the dynamic problem, we

need temporally repeated flows. This ensures that only one of the arcs (i, j) or (j, i) is used in the flow. This

enables us to use the same flipping rule for the arcs as in procedure P-MCF.

In order to show the correctness of procedure P-MDCF, we need the following lemma.
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Procedure Maximum Dynamic Contraflow (P-MDCF)

1. Construct the transformed graph G̃ = (V, Ã) where the arc set is defined as

(i, j) ∈ Ã, if (i, j) ∈ A or (j, i) ∈ A .

The arc capacity function c̃ is given by

c̃i,j := ci,j + cj,i

and the traveling time is

t̃i,j
(
= t̃j,i

)
:=

{
ti,j , if (i, j) ∈ A
tj,i, otherwise

,

for all arcs (i, j) ∈ Ã.

2. Generate a dynamic, temporally repeated flow on graph G̃ with capacity c̃ and traveling time t̃.

3. Perform flow decomposition into path and cycle flows of the flow resulting from step 2. Remove the
cycle flows.

4. Arc (j, i) ∈ A is reversed, if and only if the flow along arc (i, j) is greater than ci,j , or if there is a
non-negative flow along arc (i, j) /∈ A and the resulting flow is the maximum flow with arc reversal for
graph G = (V,A).

End procedure

Lemma 1. The maximum amount of flow in the single source and single sink maximum dynamic contraflow

problem for graph G = (V,A) is less than the optimal flow in the maximum contraflow problem for the

corresponding time expanded graph GT = (V T , AT ).

Proof. The result follows directly from the observation that every feasible flow to the maximum dynamic

contraflow problem has an equivalent feasible flow to the maximum contraflow problem of the time expanded

graph.

Please note that Lemma 1 holds good for more than one source and one sink. However, in general,

equality holds only for the case of a single source and a single sink, as we will see in the following theorem.

We are now ready to prove the correctness of procedure P-MDCF.

Theorem 4 (Proof of correctness). Procedure P-MDCF solves the maximum dynamic contraflow problem

for graph G = (V,A) optimally.

Proof. The concept of this proof is similar to the proof of Theorem 1. First, we prove that all the steps in

procedure P-MDCF are well defined and result in a feasible solution. Second, we show optimality.

For feasibility, the proof follows directly from the fact that the constructed flows are temporally repeated

and hence, there is only a flow in one direction of two nodes, and never in both directions at the same time

as well as at different time periods. After canceling the flows along the cycles, we have flows either on arc

(i, j) or on (j, i) but not on both. This ensures that the flow is less than the reversed capacities on all the

arcs at all time units. This also ensures the feasibility. In other words, we now have established the fact

[G = (V,A)]MDCFopt ≥ [G̃ = (V, Ã)]MDFopt ,

by the argument that every feasible flow of the dynamic flow problem in the transformed graph G̃ = (V, Ã)

is feasible to the maximum dynamic contraflow problem in the graph G = (V,A). Our proof is complete if

we show that

[G = (V,A)]MDCFopt ≤ [G̃ = (V, Ã)]MDFopt .
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To see this, first note that the maximum contraflow in graph GT = (V T , AT ) ≥ maximum dynamic

contraflow in graph G = (V,A), from Lemma 1. Hence we have,

[G = (V,A)]MDCFopt ≤ [GT = (V T , AT )]MCFopt .

By Theorem 1 we have that the maximum contraflow problem in graph GT = (V T , AT ) is equivalent to

the maximum flow problem in the graph G̃T = (V T , ÃT ), where the arc set ÃT is defined as

(i, j) ∈ ÃT , if (i, j) ∈ AT or (j, i) ∈ AT ,

and the arc capacity function c̃ is given by

c̃ti,j := cti,j + ctj,i .

Thus,

[GT = (V T , AT )]MCFopt = [G̃T = (V T , ÃT )]MFopt .

By Theorem 3, the maximum flow in the time expanded graph G̃T = (V T , ÃT ) can be obtained by a

temporally repeating a chain flow of a static graph G̃ = (V, Ã). Hence we have the fact,

[G̃T = (V T , ÃT )]MFopt = [G̃ = (V, Ã)]MDFopt .

Just like procedure P-MCF, running time dominating are steps are 2 and 3 for procedure P-MDCF.

This results in a worst-case running time of O(S2(|V |, |A|) + S3(|V |, |A|)); which is strongly polynomial.

Theorem 5 (Running time). Procedure P-MDCF solves the maximum flow problem in strongly polynomial

time.

For given excess b, the quickest-contraflow problem determines the minimum time horizon T needed by

any feasible flow.

Corollary 2. The quickest-contraflow problem can be solved in a strongly polynomial time.

One way to realize Corollary 2 is through the work by Burkard et al. for the quickest flow problem,

Burkard et al. (1993b). First, obtain an upper bound on the quickest time and second, perform a binary

search by repeatedly solving the minimum dynamic contraflow problem. Such a bound can be obtained

in polynomial time, for instance, by computing a path from source to sink and temporally repeating flow

along the path until all supply at the source is sent to the sink. However, this leads to a weakly polynomial

algorithm. A strongly polynomial algorithm could be obtained through a parametric search suggested by

Megiddo Megiddo (1979); Burkard et al. (1993b).

Multiple Sources and Multiple Sinks

Let us start with the definition of the multiple sources and multiple sinks version of the MDCF problem.

Definition 5 (Dynamic Transshipment Contraflow (DTCF)).

INSTANCE: A directed graph G = (V,A), a set of sources S+ ⊂ V , a set of sinks S− ⊂ V , arc capacities

ce ∈ Z+ and transmission time te ∈ Z+ for each arc e ∈ A with ti,j = tj,i if (i, j), (j, i) ∈ A, and an overall

positive integer time bound T .

QUESTION: Is there a feasible dynamic flow within time horizon T , allowing each arc to be revered once

at time 0?
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Note that the DTCF problem is a decision problem corresponding to the maximum dynamic contraflow

problem with multiple sources and multiple sinks.

DTCF is NP-complete in the strong sense

In this section, we prove that the DTCF problem is NP-complete. A sketch of the proof outline was given in

Kim and Shekhar (2005). However, we provide a rigorous proof. Also, the proof has some differences though

we provide the reduction from the same problem, 3SAT, (Garey and Johnson, 1979, page 46):

Definition 6 (3SAT).

INSTANCE: Collection C = {c1, c2, . . . , cm} of clauses on a finite set U of variables such that |c1| = 3 for

1 ≤ i ≤ m.

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

3SAT is known to be NP-complete in the strong sense, see (Garey and Johnson, 1979, Theorem 3.1).

For an instance of 3SAT, construct a graph G3SAT = (V,A) for DTCF as follows. For each clause ci
we have one source node c+i with a surplus of 1. Each variable uj ∈ U , is presented by six nodes in the

graph: two for each literal, named u1
j , u

2
j , u

1
j and u1

j respectively, one source node with surplus 1, d+
j , and

one sink node with deficit -1, d−j . Finally, there is one node with deficit −|C|, named s−. This sums up to

|V | = |C| + 6|U | + 1 nodes. Each clause node c+i is connected to the nodes with superscript 1 representing

its literals, taking 3 time units. For each j, the node u1
j is connected to its copy, u2

j , with transshipment

time of 1. Nodes d+
j are connected to u2

j and u2
j with transshipment time 1, while nodes d−j are connected

to u1
j and u1

j having a transshipment time of 1. Finally, each second copy (superscript 2) of the literals is

connected to the sink s− taking a time of 1. All arcs have a capacity of |C|. This leads to |A| = 3|C|+ 8|U |
arcs in graph G3SAT . One such graph transformation is shown in Fig. 1.

The proof of the validity of the transformation is based on the following key observation.

Lemma 2. In any feasible flow f in the graph G3SAT within time T = 5, there is a flow of value 1 from

node d+
j to node d−j , for all j.

Proof. Let us fix index j and assume that the flow to node d+
j is integral. If the flow to node d−j does not

come from node d+
j , then it can only come from exactly one of the nodes ci or d+

k with k 6= j. However, in

both cases, the flow arrives at node d−j earliest at time 6, or 7 respectively. This proofs the lemma for the

case of integer flows. The case of fractional flow is similar: If some fraction of the flow to node d−j comes

from a different node then d+
j , then the flow arrives after time T = 5.

Lemma 2 implies that for a feasible flow, at least one of the arcs (u1
j , u

2
j) or (u1

j , u
2
j) has been switched

for all j – with other words, at most one of the two arcs (u1
j , u

2
j) and (u1

j , u
2
j ) keep their direction in any

feasible flow with time bound T = 5. Now, we are able to proof the following lemma.

Lemma 3. An instance of 3SAT is a ‘YES’ instance, if only if the transformed graph G3SAT is a ‘YES’

instance for DTCF with overall time bound T = 5.

Proof. “⇒” Let 3SAT have the feasible assignment uj = aj for all variables, with aj ∈ {0, 1}. Then, reverse

the arcs (u1
j , u

2
j) if aj = 0, and reverse arc (u1

j , u
2
j ) otherwise. Now, for all j, send one unit of flow from d+

j

to d−j along the reversed arc. As only one of the arcs (u1
j , u

2
j) or (u1

j , u
2
j ) has been switched, we can send

flow from any of the nodes c+i through any non-switched arc, dependent on the assignment of the literals.

This leads to a feasible flow for DTCF within time T = 5.
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Figure 1: Transformed graph G3SAT corresponding to 3SAT instance

“⇐” We have to show, that any feasible flow f for DTCF needing (at most) 5 units of time leads to a

‘YES’ instance of the 3SAT. We assign the following value to each variable uj ∈ U as

uj :=

{
0, if arc (u1

j , u
2
j) is reversed in flow f

1, otherwise
. (23)

We have to show that this is a satisfying truth assignment for the 3SAT instance. Now, assume that clause

ci is not a truth assignment. One unit of flow is send from node c+i to node s− through one of the nodes u1
j

or u1
j with uj ∈ ci or uj ∈ ci. Notice that this flow cannot go through any other node c+k with 1 ≤ k ≤ m

and k 6= i. Lemma 2 implies that the corresponding value of variable uj has been set; i.e. uj = 1 if the flow

passes node u1
j , or uj = 1 if it passes through node uj = 1. This leads to a contradiction.

The second part of the proof of Lemma 3 together with Lemma 2 give the idea of the transformation

from 3SAT. First, we have to send one unit of flow from each of the nodes d+
j to d−j . This ensures that

(at least) one of the arcs between the copies of the literals has to be reversed. The arc which has not been

switched can then be used for the flow of the nodes c+j , allowing the clauses to have a truth assignment.

Hence, the value of the literals is reflected by the switching of the arcs.

Theorem 6. DTCF is NP-complete in the strong sense.

Proof. DTCF ∈ NP, as a non-deterministic algorithm needs only guess the set of arcs to be reversed together

with a flow f and check if the flow is feasible with time bound T = 5; which can all be done in polynomial

time. Lemma 3 states that the given transformation G3SAT from 3SAT to DTCF is valid. As the cardinality
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of the node set and the arc set of the constructed graph is O(|C|), the transformation is polynomial in the

input size of 3SAT.

We want to mention that the transformation from 3SAT can easily be changed to the general SAT by

only changing the appropriate arcs from the clause nodes to the nodes representing the literals.

What makes DTCF so tough to solve?

Ford and Fulkerson introduced the idea of temporally repeated chain flows of a static flow. This enabled

them to solve the maximum dynamic flow problem with one source and one sink. The fundamental principle

is that there is always an optimal dynamic flow which uses only one direction of an arc, but never both.

They call this a standard chain decomposition. This property allows us to solve the maximum dynamic flow

problem in strongly polynomial time. We exploit this property to solve the MDCF problem.

The concept of standard chain decomposition is not sufficient for some well known dynamic flow problems

Hoppe (1995); Hajek and Ogier (1984); Orlin (1983). An example is given in Fig. 2. Graph G = (V,A) shown

in Fig. 2 (a) has a feasible flow with time T = 6 as illustrated in Fig. 2 (b). The dashed and gray lines show

the two flows from nodes s+1 and s+2 to node s−, respectively. Analyzing the graph reveals that there is no

feasible flow within time horizon T = 6 using only one of the arcs (n1, n2) or (n2, n1); this can be seen, for

instance, by considering the flow trough the cut separating s− from the rest of the graph.

However, it was still possible to solve the maximum dynamic flow problem with multiple sources and

multiple sinks in the time-expanded graph; resulting in a pseudo-polynomial running time algorithm. How-

ever, Hoppe was able to provide a polynomial time algorithm for the dynamic transshipment problem Hoppe

(1995). He introduced the concept of non-standard chain decomposition, allowing flow in either directions of

an arc at different time steps – if both directions of an arc are present in the graph.

Loosely speaking, the procedures P-MCF and P-MDCF reverse the arcs on the fly and they are blind

whether they reverse an arc or not. This does not cause any problems in the context of static flows or single

source and single sink dynamic flows, as in a standard chain decomposition, one can always derive an optimal

solution using only one the arcs during the whole time horizon. However, in the case of multiple sources and

multiple sinks, the potential of using both arcs leads to the problem that we have to know if an arc has been

reversed or not. But exactly this memory and the tradeoff of reversing the arc now or at a later time, makes

the problem NP-complete. Consider Fig. 2 again. Applying the idea of procedures P-MDCF to this problem

leads to the following result: At time 1, we would switch arc (n2, n1) in order to increase the capacity and

at time point 3, we would switch it back again; resulting in a flow needing only T = 5 time steps.
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(a) Graph G = (V, A)
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(b) Feasible flow with T = 6 using both arcs
(n1, n2) and (n2, n1)

Figure 2: A tough instance of DTCF
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We showed that DTCF is NP-complete. The reduction from 3SAT involves |C| + |U | source nodes and

|U | + 1 sink nodes. In the following, we show that there is no polynomial time algorithm for the DTCF

problem having only two sources and one sink (or one source and two sinks), unless P = NP. In other words,

allowing only one more source or sink to DTCF makes the problem NP-complete.

We do not go into full detail here, but rather provide the idea of a reduction from PARTITION, which

is motivated by the key observation of Lemma 2 and the NP-completeness proof by Melkonian, Melkonian

(2007). Given is a finite set A and a size ai ∈ Z+ for each i ∈ A. The PARTITION problem decides whether

there is a subset Ā ⊆ A such that
∑

i∈Ā ai =
∑

j∈Ā\A aj , or not. PARTITION is known to be NP-complete

(in the weak sense), see (Garey and Johnson, 1979, Theorem 3.5, Chapter 4.2). Let
∑

i∈A ai = 2L with

L ∈ Z+. We construct an instance of the DTCF with two source nodes s+1 , s+2 and one sink node s−, as

shown in Fig. 3. The idea of this transformation is that the flow at node s+2 has to pass through node v1
0 to

reach node s−, and one unit of flow from node s+1 has to travel though node v1
n to node s−. This is indeed

true as otherwise the total time bound of T = 2L+ 2 would be exceeded. The flow through the nodes v1
0 to

v1
n and back gives the assignment to set Ā; i.e. i ∈ Ā if and only if arc (v1

i1
, v1

i ) is not reversed in the graph.

Figure 3: Instance for DTCF with time bound T = 2L+ 2 resulting from PARTITION

Contraflow Problems with Arc Switching Cost

To allow the switching of an arc in order to increase the capacity in one direction results from the application

in evacuation scenarios. However, in practice, you might not be able to switch certain arcs. For instance,

in evacuation scenarios, certain streets are reserved for emergency vehicles but can also be used by (limited

number of) other travelers; i.e. this can be modeled by reducing the capacity of this arc and blocking it from

being reversed. In addition, the switching of an arc is highly costly; i.e. in order to switch the direction of a

highway, we have to set up police blocks on each entry to the highway. Hence, it is natural to ask what are

the minimum cost incurred in switching the arcs allowing a certain (minimum) amount of flow. This leads

to the following problem.

Definition 7 (Fixed Switching Cost Contraflow (FSCF)).

Instance: A directed graph G = (V,A) with a set of sources S+, a set of sinks S−, excess b ∈ Z|V |, arc

capacities ce and arc-switching cost bfe for each arc e ∈ A.

Question: Find a feasible flow f in G with minimal total cost, if the direction of the arcs can be reversed

with (fixed) cost bf .

Note that FSCF is a static problem with multiple sources and multiple sinks. The fixed cost bfe occur,

whenever arc e is reversed. This definition allows to model the situation described above: Whenever an arc
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cannot be reversed, then its cost can be assigned a high value; i.e. Big M . As the cost of switching can

differ for each arc, we can distinguish between the effort of reversing an arc; i.e. reversing a highway or an

alleyway involves different cost or resources.

The fixed switching-cost contraflow problem has the following interesting value. One can solve the

MTCF problem and determine the optimal flow in the graph, see Corollary 1. Later, one can apply the

FSCF problem to determine the minimal cost implied by the switching of arcs, while still pushing the optimal

amount of flow trough the graph.

Notice that the FSCF problem has a similar structure as the minimum concave-cost network flow prob-

lems. These problems ask to find a feasible flow while minimizing the total cost which are in this case the

sum of concave-costs induced by using of the arcs. For an exact definition and an overview about this prob-

lem, please see the survey by Guisewite and Pardalos, Guisewite and Pardalos (1990). We can basically

assume the concave-cost per arc to consist of fixed cost, occurring whenever this particular arc is used, and a

variable cost, depending on how much flow is send trough this arc, see Kim and Pardalos (2000). Fixing the

variable cost to zero leads to a special problem called minimum cost fixed flow (MCFF) problem. Krukme

et al. prove that this problem is NP-hard in the strong sense even on series-parallel graphs, (Krumke et al.,

1998, Theorem 14). Series-parallel graphs have a very special structure and are defined recursively, see

Gross and Yellen (2003); Bern et al. (1987). Furthermore, Krukme et al. show that the minimum cost

fixed flow problem is equivalent to the following problem, (Krumke et al., 1998, Theorem 8):

Definition 8 (0/1-Minimum Improvement Flow (MIF)).

Instance: A graph G = (V,A) with sink node s+, source node s−, excess b ∈ Z|V |, arc capacities ce ∈ Z+,

maximum capacities Ce ∈ Z+, Ce ≥ ce and capacity improvement cost b̄e ∈ Z.

Question: Determine an improvement strategy d : A → {0, Ce − ce} with minimum cost
∑

e∈A deb̄e, such

that the graph with the improved capacity ue + de, ∀e ∈ A, allows a feasible flow f from s+ to s−.

The definition given here is slightly different then the one in the paper by Krukme et al., (Krumke et al.,

1998, Definition 7). Basically, we assume all data to be positive integral. The improvement strategy function

d is a 0-1 decision if additional capacity is used or not; independent of how much additional capacity is used.

The cost for this additional capacity for arc e is fix at value (Ce − ce)b̄e. In order to prove that FSCF is

strongly NP-hard, we show that it is equivalent to MIF.

Theorem 7. Fixed switching-cost contraflow is equivalent to 0/1-minimum improvement flow.

Proof. Without loss of generality, we can assume the FSCF problem to have single source and single sink.

Recognize that the graph transformation provided for Corollary 1 works here.

“⇒” Given an instance of FSCF for graph G = (V,A) with arc capacity ce and arc-switching cost bfe .

Construct an instance of MIF for graph G = (V,A) as follows. If there is an arc (i, j) ∈ A and (j, i) /∈ A,

then (i, j), (j, i) ∈ A with i,j = Ci,j = Cj,i := ci,j , ī,j = j,i := 0, and j̄,i := bfi,j/ci,j respectively. For the case

that (i, j), (j, i) ∈ A, we define (i, j), (j, i) ∈ A with i,j := ci,j , Ci,j = Cj,i := ci,j + cj,i, ī,j := bfj,i/(ci,j + cj,i),

j,i := cj,i, and j̄,i := bfi,j/(ci,j + cj,i) respectively. By applying the cycle reduction principle we can see that

this transformation is indeed valid.

“⇐” Given an instance of MIF for graph G = (V,A) with ce, Ce and b̄e, construct an instance of FSCF for

graph G = (V,A) as follows. For any arc (i, j) ∈ A, we have the three arcs (i, j), (i, ī), (j, ī) ∈ A. Define

i,j := ci,j ,
f
i,j = f

i,̄i
:= M , i,̄i = j,̄i = Ci,j − ci,j and f

j,̄i
:= b̄i,j(Ci,j − ci,j), where M is a big number preventing

to switch the corresponding arc in an optimal solution.

Recognize that having fixed cost for arc reversals makes the problem NP-hard, even in the static case.

One reason is, for instance, the previously mentioned observation, that the procedure P-MCF is ‘blind’ for

the arc reversal decisions. Adding a time component to FSCF makes it practically even more difficult to
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solve. The time component reveals also the differences between the (dynamic) fixed switching-cost contraflow

problem and the (dynamic) 0/1-minimum improvement flow problem: MIF affects only a particular arc (i, j),

while in FSCF also the reverse arc (j, i) is affected, if both arcs are contained in the graph.
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A Branch-and-Price Mechanism for Multimodal Evacuation

Introduction

The survey on evacuation problems (Arulselvan et al. (2004)) indicates that there is a shortage of analytical

techniques in multimodal evacuation studies. This chapter focuses on establishing efficient evacuation routes

with bimodal transportation. We consider emergency management or event management situations such

as football game, which assumes the absence of panic situations but still captures the several aspects of

an evacuation settings. These include high demands during the event, need to satisfy demands quickly

and congestion due to high demands. We assume private cars and buses as the modes of transportation.

The cars are to take a path from source to destination, while the buses are routed. We assume that the

routes of the buses are known. We need to establish efficient paths for the cars and determine the frequency

of the buses along the routes. The problem is comparable to the line-planning problem Goossens et al.

(2002); Abbas-Turki et al. (2004); Borndörfer et al. (2007), where multiple lines or modes of transportation

are available and demands of people are available at specific time windows. The lines are predefined paths

and the frequency of a line needs to be determined. Columns generation procedures are quite popular

for the line planning problem and much research have been done in this area Borndörfer et al. (2007);

Pfetsch and R.Borndrfer (2005). We employ the branch and price approach to solve the problem.

Multimodal Problem

Multimodal flow problems are known to be NP-hard Radwan et al. (2005). Thus, the problem, tailored to

the needs of evacuation studies, requires efficient approaches to solve them either approximately or exactly.

We provided a path-based formulation that would enable us to employ a branch and price procedure to solve

the problem. We formally define the problem and state the assumptions.

Problem Definition

In this problem we have two sets of people depending on their modes of transport. We recognize the modes

of transportation as private cars and buses. We know the demands of cars and people traveling by bus for

every pair of node. We also have a set of bus tours that has already been established. The arcs of the

network under consideration is shared by both cars and buses. Each link have a travel time and a capacity.

In a time expanded network, each link has a cost depending on the time instance of the originating node

and its distance from its nearest source node. We need to determine the most efficient path for the cars

between the origins and destination and the frequency of the buses along their predetermined routes without

exceeding the capacity of the arcs. The efficiency is determined based on the cost structure.

We formally define the problem as: Given a graph G(V,E) with cij , uij and tij as the cost, capacity

and travel time respectively on each arc (ij) ∈ E, a set of T bus tours, and two sets of origin destination

pairs (OD)1 and (OD)2 corresponding to demands of origin and destinations of cars and people traveling

by bus respectively, determine the minimum cost path of the cars and frequency of the bus routes satisfying

demands and capacity.

Assumptions and realization

We make some simplistic assumptions, which does not hinder the realization of the model. We assume that

the demands between the origin-destination pairs are known and remains static. We assume that the bus

routes are established and we only need to determine their frequency. We also assume that the loading and

unloading time of the buses is zero. The last assumption could, however, be overcome in the current model

38



by appropriately changing the bus routes to accommodate fixed loading times. We now provide a path and

route-based formulation that will enable us to implement a branch and price mechanism.

Formulation and discussion

A bimodal evacuation problem is considered in which two modes of evacuation, namely private cars and

buses, are used for evacuating people from the origin nodes. The people have their destination preferences

from the respective origins. In an evacuation setting, the buses are routed to pick up people from their

origins and drop them at their destinations. The private cars are taken by people directly from the origin

to the respective destinations. The demands are known in terms of number of cars and number of people

for the respective origin-destination pair. The buses and the cars have to share the capacity of the links

in the road. We aim to reach the destinations in the quickest time possible. The objective function is a

little loosely defined, but we will elaborate it shortly. We provide a branch and price framework to solve the

problem. We have two subproblems, one to generate the paths of the private cars and the other to generate

paths of people. For the time-expanded formulation, we need to determine an upper bound on the value of

T . A loose bound on this value be obtained by individually bounding the times for buses and cars separately

and adding them together. The implication is we serially route them one after the other and this is still a

feasible solution to the problem. This will also help us obtain an initial feasible solution to our branch and

price procedure. We discuss the procedure to obtain individual time bounds later.

fp (xp) is a binary variable indicating whether path p is used to satisfy the demand of the correspond-

ing origin destination pair. bt is binary variable with value 1 if a buses tour t is used and 0 otherwise.

α1(ij, p)(α2(ij, p)) is an indicator variable with value 1 if arc ij is in bus path(car path) p and 0 otherwise.

β(ij, t) is an indicator variable with value is 1 if arc ij is in tour t and 0 otherwise. γ1(st, p)(γ2(st, p)) is an

indicator variable with value 1 if a bus path(car path) p has origin and destination as s and t respectively

and 0 otherwise. Let P1 and P2 be the sets of all bus paths and car paths respectively and T be the set of all

bus tours. B is the capacity of a bus. OD1 and OD2 are the sets of origins-destination pairs corresponding

to buses and cars respectively. d1
st and d2

st is the demand of people using buses and cars respectively from

origin s to destination t. Finally, bt is a binary variable with value 1 if a tour is picked and 0 otherwise.

Minimize
∑

p∈P1

cpxp +
∑

p∈P1

cpfp (24)

s.t. ∑

p1∈P1

γ1(st, p)xp = 1, ∀st ∈ OD1 (25)

∑

p2∈P2

γ2(st, p)fp = 1, ∀s ∈ OD2 (26)

∑

p∈P1

d1
stα1(ij, p)xp −

∑

t∈T

β(ij, t)Bbt ≤ 0, ∀(ij) ∈ E (27)

∑

p∈P2

d2
stα2(ij, p)fp +

∑

t∈T

β(ij, t)bt ≤ cij , ∀(ij) ∈ E (28)

xp ∈ {0, 1}, ∀p ∈ P1 (29)

fp ∈ {0, 1}, ∀p ∈ P2 (30)

bt ∈ {0, 1}, ∀t ∈ T (31)
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Branch and Price Mechanism

We note that the problem has exponentially many paths in terms of the input size of the graph and we will

be generating these variables in the subproblem. This is a standard approach in most of the routing and

scheduling problems.

Restricted Master Problem (RMP)

The restricted master problem is obtained by relaxing constraints (28) - (30) as continuous variables and

replacing the sets P1 and P2 by the restricted sets P ′
1 ⊆ P1 and P ′

2 ⊆ P2 respectively. This leads to the

restricted master problem.

Minimize
∑

p∈P ′

1

cpxp +
∑

p∈P ′

1

cpfp (32)

s.t. ∑

p1∈P ′

1

γ1(st, p)xp = 1, ∀st ∈ OD1 (33)

∑

p2∈P ′

2

γ2(st, p)fp = 1, ∀st ∈ OD2 (34)

∑

p∈P ′

1

d1
stα1(ij, p)xp −

∑

t∈T

β(ij, t)Bbt ≤ 0, ∀(ij) ∈ E (35)

∑

p∈P ′

2

d2
stα2(ij, p)fp +

∑

t∈T

β(ij, t)bt ≤ cij , ∀(ij) ∈ E (36)

0 ≤ xp ≤ 0, ∀p ∈ P ′
1 (37)

0 ≤ fp ≤ 0, ∀p ∈ P ′
2 (38)

0 ≤ bt ≤ 1, ∀t ∈ T (39)

Let π ∈ R
OD1 be the unrestricted dual variable corresponding to constraint set (43), µ ∈ R

OD2 be the

unrestricted dual variable corresponding to constraint set (44), η ∈ RE
− be the non-positive dual variable

corresponding to the constraint set (45) and finally ψ ∈ RE
− be the non-positive dual variable corresponding

to the constraint set (46). In the pricing problem, we are interested in the reduced cost of the variable xp

and fp. We determine the minimum reduced cost of the path flow variables in the pricing subproblems. If

the minimum reduced cost corresponding to a origin destination pair is negative we add it to the restricted

set (corresponding to the cars or buses) and the restricted master problem is solved again.

People-Path Subproblem

In the people-path subproblem, we determine the minimum reduced cost, x̄p, of a path flow variable, xp, for

people taking buses between a given origin-destination pair st ∈ OD1. This is given by

x̄p = cp − (πst +
∑

∀(ij)∈E

α1(ij, p)ηij) = −πst +
∑

∀(ij)∈E

(α1(ij, p)cij − α1(ij, p)ηij) (40)

The cost of the path is given by the sum of the cost on arcs in the above equation. Now, the shortest

path problem for all pairs of st ∈ OD1 with the above arc costs cij − ηij is solved. If πst is more than the

length of a path, then it is added to the restricted path set P1 and the RMP is solved again. We observed
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that the dual variable µ is negative and hence the cost on each arc is positive. Thus the shortest path

problem is solvable in polynomial time.

Car-Path Subproblem

In the car-path subproblem, we are concerned with the reduced cost, f̄p, of car flow variables, fp, for the

pairs of origin-destination st ∈ OD2. This given by

f̄p = cp − (µst +
∑

∀(ij)∈E

α2(ij, p)ψij) = −µst +
∑

∀(ij)∈E

(α2(ij, p)cij − α2(ij, p)ψij) (41)

We solve the shortest path, just as in people-path subproblem, but with arc cost cij − ψij and is a path

costs more than µst, we add it to the restricted set P2 and the RMP is solved again.

Branching Strategy

The branching rules is important as this determines the complexity of the pricing problem. The branching

also induces some practical difficulties that needs to be explicitly handled. We address the two important

problems encountered while branching.

The decision to branch occurs at a node of the branch and bound tree, when we cannot enter any more

columns to the restricted sets from either subproblems and the relaxed LP solution at the current node is

infeasible to the integer program. At this juncture, if any of the bt variables are fractional, we decide to

branch on them. It is easy to see that this branching will not cause any difficulty to the subproblems as

the arc costs corresponding to the shortest path problems still remains positive. If none of the bt variables

are fractional and if a flow variable is fractional, a branching on the fractional path flow variable would

restrict the subproblems to generate paths other than the path that was fractional. For instance, let fp be

the fractional path with value f̄p. We branch by adding

fp ≤ ⌊f̄p⌋

to one branch and

fp ≥ ⌈f̄p⌉

to the other branch. The difficulty now in the subproblem is that a candidate path generated for that

origin-destination pair should not be the branched variable. We cannot guarantee that the shortest path

problem could generate such a path. In fact after k branchings, we might have to solve the kth shortest path

subproblem. This is a common difficulty that arises in branch and price approaches for multicommodity

flow problems. There are a few techniques in the literature that handles this issue C.Barnhart et al. (2000);

Alvelos (2005); Parker and Ryan (1993); Ryan and Foster (1981). One technique is to make an arc or a

set of arcs of the path that was branched as forbidden arcs in the branches. Thus the subproblem will not

regenerate the path C.Barnhart et al. (2000). Another technique in the literature Alvelos (2005) to solve the

problem is to branch on arc flow variable instead of path flow variable. For instance, the amount of flow of

cars on an arc (ij) is given by
∑

p∈P2
α2(ij, p)fp and let x̄ij be the fractional flow on the arc. So we can add

the constraint ∑

p∈P2

α2(ij, p)fp ≤ ⌊x̄ij⌋

to one branch and ∑

p∈P2

α2(ij, p)fp ≥ ⌈x̄ij⌉
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to other branch. This, however, does not guarantee positive arc costs anymore in the subproblems and they

become NP-hard. This problem was overcome by adding separate variables for flows along cycles in the

RMP. Thus the subproblem has to return a shortest path if available or a negative cost cycle. This could

be solved in polynomial time. We employ the first method in this problem, where we make the arcs of path

forbidden in the branches.

The next problem is when we arrive at a branch and bound node with the LP relaxation resulting in

an infeasible solution. In an elementary branch and bound procedure we prune the search in this situation.

This is, however, not possible in branch and price mechanism as we have not yet considered the entire set of

columns and hence there might exist a path that has not been entered but could provide a feasible solution

in the future. We take care of this issue by adding dummy paths in the initial solution with high cost that

will provide us with the feasible solution.

Stabilization Techniques

The columns generation procedure, although a widely used technique to solve integer programming, has

problems with convergence to an optimal solution. The problems with are usually attributed the degeneracy

in the primal problem and the subproblem is solved with dual solutions with extreme values that results in

generation columns that are very useful when entered in the master problem. There are a few numerical

techniques available in the literature that are frequently employed to handle this situation.

Smoothing Technique

The smoothing technique involves the storing past dual solutions and generating dual solutions for the sub-

problems by taking the convex combinations of the current best dual solution and either past dual solutions

or the current best dual solution Wentges (1997). Thus the dual solution used to solve the subproblem

smoothed first and then the subproblem is solved. In this research undertaking, we store the best dual

solution obtained and use it smooth the current dual solution before sending it to the subproblem.

Let φcurrent be the current dual solution of the restricted master problem and φbest be the , then the

new dual solution is given by

φnew = α ∗ φbest + (1 − α) ∗ φcurrent, where 0 ≤ α ≤ 1

As the bound increases we increase the weight of the φbest. It must be noted that the subproblem may not

return a column for the modified dual solution. In this case, we need to decrease the weight of φbest or

make its weight equal to zero and resolve the subproblem. The method is effective and could be quite easily

implemented in the current branch and price framework. We implemented this and obtained convergence in

some of the instances.

Box Stabilization

The box stabilization method involves in penalizing the dual variable for leaving the box that is centered at

the current best dual solution (also referred to as stability center). There are number of techniques in the

literature that models this modified problem. We employ the technique proposed by du Merle et al. (1999)

that involves in constraining the slack variables of the primal problem, which indirectly penalizes the dual

variable from deviating from the stability center. After solving the restricted master problem we solve the

subproblem. We move the stability center and the box everytime we obtain an improvement in the bound.
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Minimize
∑

p∈P ′

1

cpxp +
∑

p∈P ′

1

cpfp + δ+y+ − δ−y− (42)

s.t. ∑

p1∈P ′

1

γ1(st, p)xp + y+
1 − y−1 = 1, ∀st ∈ OD1 (43)

∑

p2∈P ′

2

γ2(st, p)fp + y+
2 − y−2 = 1, ∀st ∈ OD2 (44)

∑

p∈P ′

1

d1
stα1(ij, p)xp −

∑

t∈T

β(ij, t)Bbt + y+
3 − y−3 ≤ 0, ∀(ij) ∈ E (45)

∑

p∈P ′

2

d2
stα2(ij, p)fp +

∑

t∈T

β(ij, t)bt + y+
4 − y−4 ≤ cij , ∀(ij) ∈ E (46)

y+ ≤ ǫ+ (47)

y− ≤ ǫ− (48)

0 ≤ xp ≤ 0, ∀p ∈ P ′
1 (49)

0 ≤ fp ≤ 0, ∀p ∈ P ′
2 (50)

0 ≤ bt ≤ 1, ∀t ∈ T (51)

In the above formulation, we add the slack and surplus variables to the primal constraints and we

penalize the variables in the objective function. We also restrict the slack and surplus variables, which

provides the penalty for dual variables from deviating from the stability center. At the end of every iteration

we update the stability center if the dual bound improves and change the right hand side and cost coefficients

of the slack and surplus variables accordingly. We are currently implementing this strategy and this could

be realized within our current framework.

Bundle methods

The bundle method treats the column generation problem as cutting plane method in the dual problem and

adds cutting planes to the restricted Lagrangian dual problem and solves the restricted dual every iteration.

We provide the information for the sake of completeness of the study. The current implementation framework

cannot accommodate this technique.

Interior Point Stabilization

Interior point stabilization is a recent stabilization technique, which has shown great promise. We are

currently developing the theory to accommodate our model to incorporate a primal-dual interior-point sta-

bilization. The idea is to generate dual interior point solution that prevents the subproblem to work with

dual extreme point solutions and hence provide faster convergence.

Preliminary Results

We tested grid graphs of size 25 to 400 nodes. Table 3 enumerates the instances we tested. The largest

instance tested was grid graph with 400 nodes and 1,520 edges with 100 cars and 40 buses.

Additionally, in order to test the robustness of the code we tested a few online benchmark instances for

multicommodity flow problems Larsson and Yuan (2004) for four planar graphs and results are provided in

table 4. We generated one dummy bus tour and one bus commodity for each of the instances.
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Table 3: Branch & Price model tested on grid graphs

# Nodes Arcs Cars Buses Tours CPU Time

1 25 80 6 6 3 0.013
2 25 80 10 10 4 0.064
3 25 80 20 10 4 0.174
4 25 80 15 15 4 0.089
5 100 360 5 5 4 0.138
6 100 360 10 10 5 1.161
7 100 360 20 10 5 1.063
8 100 360 20 20 7 0.8
9 225 840 10 10 7 5.637
10 225 840 20 20 10 1.205
11 400 1520 100 40 14 52.503

Table 4: Branch & Price model tested on planar graphs with one bus commodity

# Nodes Arcs Cars CPU Time

1 30 150 92 0.08
2 50 250 267 0.177
3 80 440 543 0.509
4 100 532 1085 1.605

Conclusions

The models currently available in the literature are usually customized for the evacuation of specific regions

in geography tailored to its needs. The models have their relative advantages and disadvantages, but precise

to their needs. It is rather tedious to generate a unified model that could be used in all situations. Inclusion

of several features impacts the complexity of the model and hence the computational speed. On the other

hand, simplifying a model would compromise the precision of the model. However, the models have some

common overlapping features that we highlighted in this report. We saw that the hybrid models could

be reasonably accurate and precise by exploiting the relative advantages of simulation and optimization

techniques. We provided broad classification of evacuation models based on simulation or optimization

methods. Furthermore, we identified the factors considered by these optimization models and commented

on the approaches. We highlighted the features that will have a significant effect on the travel time, namely

intermodal transportation, dynamic traffic demand estimation and contra flows or lane reversals in case of

a wide-area evacuation. Models incorporating intermodal transportation and contra flows demonstrated the

improvement in evacuation efficiency compared to the traditional models. Also, static demand model have

become obsolete and dynamic demand is necessary for practical realization of the models. Some areas that

needs attention are optimization problems to establish alternate evacuation paths for incident managements.

Critical node detection and traffic management on critical links are studies that might improve the efficiency

of the evacuation and also might give an indication of the necessary links that we could focus on contraflows.

Also heuristic exploration of optimization techniques could significantly reduce the computational speed.

Research in the field of clustering of nodes and zonal division of network is very limited. This might shed

light in performing evacuation over a smaller aggregated network helping in computational efficiency.
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We formally introduced the contraflow problem that has applications in emergency transportation man-

agement. Several classic network flow problems are studied, including static and dynamic networks. A

polynomial time algorithm for the dynamic contraflow problem with single source and single sink is given,

together with an NP-completeness proof for the dynamic transhipment contraflow problem. The hardness

of the contraflow problem with arc reversal cost was also indicated.

We provided a branch and price framework to solve a bimodal multicommodity flow problem. We

consider cars and buses as two modes of transportation and we obtained optimal paths for cars and identified

the bus routes needed for transportation. We tested the model on grid graphs of sizes up to 400 nodes. As

a future work, we need to employ heuristic methods for the subproblems, develop procedures that would

provide good lower bound for the branch and bound. We are currently in the process of implementing a box

stabilization technique in order to accelerate the convergence of the branch and price procedure that would

enable us to test much larger instances and we need to compare the computational performance against

other stabilization techniques.

Although the theory and algorithms developed are exact methods (the proof of correctness itself is

a validation), a good validation approach from a practical sense is necessary for testing for negating the

assumptions made in the model and check the computational efficiency on large scale realtime instances.

More importantly, the applicability of the the algorithm and hence the results to real-life problems would also

be satisfactory at this stage. This would require some additional effort with which it could be accomplished.

The models were developed addressing specific events arising in emergency situations such as evacuating

stadiums, cities and buildings, but the model could be extended to accommodate more general instances

and provide large-scale transportation solutions. These could be handled with minor changes to input and

algorithmic parameters depending on the situation.
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